Log in

Molecular profiling in breast cancer

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Molecular profiling has provided biological evidence for the heterogeneity of breast cancer through the identification of intrinsic subtypes like Luminal A, Luminal B, HER2+/ER− and basal-like. It has also led to the development of clinically applicable gene expression-based prognostic panels like the Mammaprint® and Oncotype Dx™. The increasingly sophisticated understanding allowed by this and similar technology promises future individualized therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ransohoff DF. Bias as a threat to the validity of cancer molecular-marker research. Nat Rev Cancer 2005;5:142–9.

    Article  PubMed  CAS  Google Scholar 

  2. Simon R, Radmacher MD, Dobbin K, McShane, LM. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 2003;95:14–8.

    Article  PubMed  CAS  Google Scholar 

  3. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406:747–52.

    Article  PubMed  CAS  Google Scholar 

  4. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

  5. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 2006;7:96.

    Article  PubMed  CAS  Google Scholar 

  6. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003;100:8418–23.

    Article  PubMed  CAS  Google Scholar 

  7. Ross DT, Perou CM. A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis Markers 2001;17:99–109.

    PubMed  CAS  Google Scholar 

  8. Sotiriou C, Neo SY, McShane LM, Korn L, ong PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 2003;100:10393–8.

    Article  PubMed  CAS  Google Scholar 

  9. Yu K, Lee CH, Tan PH, Tan P. Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clin Cancer Res 2004;10:5508–17.

    Article  PubMed  CAS  Google Scholar 

  10. Sorlie T, Wang Y, **ao C, Johnsen H, Naume B, Samaha RR, et al. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 2006;7:127.

    Article  PubMed  CAS  Google Scholar 

  11. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530–6.

    Article  Google Scholar 

  12. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, et al. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A 2001;98:11462–7.

    Article  PubMed  CAS  Google Scholar 

  13. Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 2004;15:2523–36.

    Article  PubMed  CAS  Google Scholar 

  14. Korkola JE, DeVries S, Fridlyand J, Estep AL, Chen YY, Chew KL, et al. Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 2003;63:7167–75.

    PubMed  CAS  Google Scholar 

  15. Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, Toedt G, et al. High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin Cancer Res 2006;12:345–52.

    Article  PubMed  CAS  Google Scholar 

  16. Carey LA, Perou CM, Livasy CA, Dressler LG, Croan D, Conway K, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006;295:2492–502.

    Article  PubMed  CAS  Google Scholar 

  17. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, cervera N, Tarpin C, et al. Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Res 2005;65:2170–8.

    Article  PubMed  CAS  Google Scholar 

  18. Charafe-Jauffret E, Tarpin C, Bardou VJ, Bertucci F, Ginestier C, Braud AC, et al. Immunophenotypic analysis of inflammatory breast cancers: identification of an ‘inflammatory signature.’ J Pathol 2004;202:265–73.

    Article  PubMed  Google Scholar 

  19. Van Laere S, Van der Auwera I, Van den Eynden GG, Fox SB, Bianchi F, Harris AL, et al. Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res Treat 2005;93:237–46.

    Article  PubMed  CAS  Google Scholar 

  20. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Breast Cancer Linkage Consortium. Lancet 1997;349:1505–10.

    Google Scholar 

  21. Eisinger F, Jacquemier J, Charpin C, Stoppa-Lyonnet D, Bressac-de-Paillerets B, Peyrat JP, et al. Mutations at BRCA1: the medullary breast carcinoma revisited. Cancer Res 1998;58:1588–92.

    PubMed  CAS  Google Scholar 

  22. Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst 1998;90:1138–45.

    Article  PubMed  CAS  Google Scholar 

  23. Jacquemier J, Padovani L, Rabayrol L, Lakhani SR, Penault-Llorca F, Denoux Y, et al. Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J Pathol 2005;207:260–8.

    Article  PubMed  CAS  Google Scholar 

  24. Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Mamessier E, Adelaide J, et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res 2006;66:4636–44.

    Article  PubMed  CAS  Google Scholar 

  25. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumolean P, Larsimont D, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 2005;24:4660–71.

    Article  PubMed  CAS  Google Scholar 

  26. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 2006;25:3994–4008.

    Article  PubMed  CAS  Google Scholar 

  27. Hannemann J, Velds A, Halfwerk JB, Kreike B, Petersen JL, van de Vijver MJ. Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res 2006;8:R61.

    Article  PubMed  CAS  Google Scholar 

  28. Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, et al. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 2006;66:5278–86.

    Article  PubMed  CAS  Google Scholar 

  29. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF, et al. Gene expression predictors of breast cancer outcomes. Lancet 2003;361:1590–6.

    Article  PubMed  CAS  Google Scholar 

  30. Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 2003;63:5679–84.

    PubMed  CAS  Google Scholar 

  31. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436:518–24.

    Article  PubMed  CAS  Google Scholar 

  32. Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003;33:49–54.

    Article  PubMed  CAS  Google Scholar 

  33. Weigelt B, Hu Z, He X, Livasy C, Carey LA, Ewend MG, et al. Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 2005;65:9155–8.

    Article  PubMed  CAS  Google Scholar 

  34. Weigelt B, Wessels LF, Bosma AJ, Glas AM, Nuyten DS, He YD, et al. No common denominator for breast cancer lymph node metastasis. Br J Cancer 2005;93:924–32.

    Article  PubMed  CAS  Google Scholar 

  35. Chlebowski RT, Chen Z, Anderson GL, Rohan T, Aragaki A, Lane D, et al. Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 2005;97:439–48.

    Article  PubMed  Google Scholar 

  36. Foulkes WD, Stefansson IM, Chappuis PO, Begin LR, Goffin JR, Wong N, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 2003;95:1482–5.

    PubMed  CAS  Google Scholar 

  37. Olopade OI, Grushko T. Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001;344:2028–9.

    Article  PubMed  CAS  Google Scholar 

  38. Foulkes WD, Brunet JS, Stefansson IM, Straume O, Chappnis PO, Begin LR, et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 2004;64:830–5.

    Article  PubMed  CAS  Google Scholar 

  39. Olivotto IA, Bajdik CD, Ravdin PM, Speers CH, Coldman AJ, Norris BO, et al. Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol 2005;23:2716–25.

    Article  PubMed  Google Scholar 

  40. Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 1992;22:207–19.

    Article  PubMed  CAS  Google Scholar 

  41. Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, Senn HJ. Meeting highlights: updated international expert consensus on the primary therapy of early breast cancer. J Clin Oncol 2003;21:3357–65.

    Article  PubMed  Google Scholar 

  42. Eifel P, Axelson JA, Costa J, Crowley J, Curran WJ, Deshler A, et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J Natl Cancer Inst 2001;93:979–89.

    Article  PubMed  CAS  Google Scholar 

  43. Ahr A, Karn T, Solbach C, Seiter T, Strebhardt K, Holtrich U, et al. Identification of high risk breast-cancer patients by gene expression profiling. Lancet 2002;359:131–2.

    Article  PubMed  Google Scholar 

  44. Foekens JA, Atkins D, Zhang Y, Sweep FC, Harbeck N, Paradiso A, et al. Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. J Clin Oncol 2006;24:1665–71.

    Article  PubMed  CAS  Google Scholar 

  45. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004;5:607–16.

    Article  PubMed  CAS  Google Scholar 

  46. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351:2817–26.

    Article  PubMed  CAS  Google Scholar 

  47. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  48. Iwao K, Matoba R, Ueno N, Ando A, Miyoshi Y, Matsubara K, et al. Molecular classification of primary breast tumors possessing distinct prognostic properties. Hum Mol Genet 2002;11:199–206.

    Article  PubMed  CAS  Google Scholar 

  49. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006;98:1183–92.

    Article  PubMed  CAS  Google Scholar 

  50. Habel LA, Quesenberry CP, Jacobs M, Greenberg D, Fehrenbacher L, Alexander C, et al. Gene expression and breast cancer mortality in Northern California Kaiser Permanente Patients: a large population-based case control study. J Clin Oncol 2005 ASCO Annual Meeting Proceedings 2005;23:603.

    Google Scholar 

  51. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 2005;23:7265–77.

    Article  PubMed  CAS  Google Scholar 

  52. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006;24:3726–34.

    Article  PubMed  CAS  Google Scholar 

  53. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005;365:671–9.

    PubMed  CAS  Google Scholar 

  54. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2004;2:E7.

    Article  PubMed  CAS  Google Scholar 

  55. Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshitani R, Sorlie T, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 2005;102:3738–43.

    Article  PubMed  CAS  Google Scholar 

  56. Dai H, van’t Veer L, Lamb J, He YD, Mao M, Fine BM, et al. A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer Res 2005;65:4059–66.

    Article  PubMed  CAS  Google Scholar 

  57. Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, Salim H, et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 2006;3:e47.

    Article  PubMed  CAS  Google Scholar 

  58. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  59. Ponti D, Costa A, Zaffaroni N, Pratesi G. Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005;65:5506–11.

    Article  PubMed  CAS  Google Scholar 

  60. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 2007;356:217–26.

    Article  PubMed  CAS  Google Scholar 

  61. Eden P, Ritz C, Rose C, Ferno M, Peterson C. “Good Old” clinical markers have similar power in breast cancer prognosis as microarray gene expression profilers. Eur J Cancer 2004;40:1837–41.

    Article  PubMed  CAS  Google Scholar 

  62. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, Nobel AB, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 2006;355:560–9.

    Article  PubMed  CAS  Google Scholar 

  63. Ein-Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 2005;21:171–8.

    Article  PubMed  CAS  Google Scholar 

  64. Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, et al. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A 2001;98:10787–92.

    Article  PubMed  CAS  Google Scholar 

  65. Carey LA, Dees EC, Sawyer LR, et al. The triple negative paradox: primary tumor chemosensitivity of the basal-like breast cancer phenotype. Clin Cancer Res in press.

  66. Rouzier R, Perou CM, Symmans WF, Cristofanilli M, Anderson K, Hess KR, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005;11:5678–85.

    Article  PubMed  CAS  Google Scholar 

  67. Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ, et al. Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 2006;295:1658–67.

    Article  PubMed  CAS  Google Scholar 

  68. Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 2004;22:2284–93.

    Article  PubMed  CAS  Google Scholar 

  69. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 2003;362:362–9.

    Article  PubMed  CAS  Google Scholar 

  70. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Tham YL, et al. Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. J Clin Oncol 2005;23:1169–77.

    Article  PubMed  CAS  Google Scholar 

  71. Cleator S, Tsimelzon A, Ashworth A, Dowsert M, Dexter T, Powles T. Gene expression patterns for doxorubicin (Adriamycin) and cyclophosphamide (cytoxan) (AC) response and resistance. Breast Cancer Res Treat 2006;95:229–33.

    Article  PubMed  CAS  Google Scholar 

  72. Folgueira MA, Carraro DM, Brentani H, Patrao DF, Barbosa EM, Netto MM, et al. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. Clin Cancer Res 2005;11:7434–43.

    Article  PubMed  CAS  Google Scholar 

  73. Hannemann J, Oosterkamp HM, Bosch CA, Velds A, Wessels LF, Loo C, et al. Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 2005;23:3331–42.

    Article  PubMed  CAS  Google Scholar 

  74. Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol 2005;23:422–31.

    Article  PubMed  CAS  Google Scholar 

  75. Potti A, Dressman HK, Bild A, Riedel RF, Chan G, Sayer R, et al. Genomic signatures to guide the use of chemotherapeutics. Nat Med 2006;12:1294–300.

    Article  PubMed  CAS  Google Scholar 

  76. Cleator SJ, Powles TJ, Dexter T, Fulford L, Mackay A, Smith Ie, et al. The effect of the stromal component of breast tumours on prediction of clinical outcome using gene expression microarray analysis. Breast Cancer Res 2006;8:R32.

    Article  PubMed  CAS  Google Scholar 

  77. Troester MA, Hoadley KA, Sorlie T, Herbert BS, Borresen-Dale AL, Lonning PE, et al. Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 2004;64:4218–26.

    Article  PubMed  CAS  Google Scholar 

  78. Jansen MP, Foekens JA, van Staveren IL, Dirkzwager-Kiel MM, Ritstier K, Look MP, et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol 2005;23:732–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, S.R., Carey, L.A. Molecular profiling in breast cancer. Rev Endocr Metab Disord 8, 185–198 (2007). https://doi.org/10.1007/s11154-007-9035-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-007-9035-3

Keywords

Navigation