Log in

Health Benefits and Pharmacological Effects of Porphyra Species

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Porphyra, one of the most cultured red algae has gained economic importance across the globe for its nutritional benefits. Porphyra is being cultivated, harvested, dried, processed and consumed in large quantities in south eastern countries. It contains relatively high amounts of proteins, carbohydrates, and micronutrients. Exploitation of its fundamental attributes led to the discovery of various biologically active compounds like polysaccharides, phycobiliproteins and peptides with effective pharmacological applications. In this review, a systematic account of the research accomplished in the past decade and up-to-date overview of various bioactive compounds and its pharmacological implications has been compiled. This review summarizes the bioactivities like antioxidative, immunomodulatory, antihypertensive, anticoagulant and anticancer properties of the bioactive compounds from Porphyra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aPTT:

Activated partial thromboplastin time

ACE-I:

Angiotensin-converting enzyme

0C:

Degree Celsius

CVD :

Cardiovascular diseases

ConA:

Concanavalin A

Da:

Dalton

kDa:

Kilodalton

DPPH:

2,2-diphenyl-1-picrylhydrazyl

EPA :

Eicosapentaenoic acid

μM:

Micromolar

mmHg:

Millimeter of mercury

RAAS:

Renin-angiotensin aldosterone system

NO:

Nitric oxide

ROS:

Reactive oxygen species

TNF:

Tumor necrosis factor

MAA:

Mycosporine like amino acids

LPS:

Lipopolysaccharide

nm:

Nanometer

R-PE:

Phycoerythrin

IC 50:

Inhibitory concentration- 50

TEAC:

Tetraethylammonium chloride

IFN- γ:

Interferon-gamma

TNF-α:

Tumor necrosis factor alpha

References

  1. Plaza M, Cifuentes A, Ibáñez E (2008) In the search of new functional food ingredients from algae. Trends Food Sci Technol 19:31–39. https://doi.org/10.1016/j.tifs.2007.07.012

    Article  CAS  Google Scholar 

  2. Samarakoon K, Jeon YJ (2012) Bio-functionalities of proteins derived from marine algae - a review. Food Res Int 48:948–960. https://doi.org/10.1016/j.foodres.2012.03.013

    Article  CAS  Google Scholar 

  3. Harnedy PA, Fitzgerald RJ (2011) Bioactive proteins, peptides, and amino acids from macroalgae. J Phycol 47:218–232. https://doi.org/10.1111/j.1529-8817.2011.00969.x

    Article  CAS  PubMed  Google Scholar 

  4. Cao J, Wang J, Wang S, Xu X (2016) Porphyra species: a mini-review of its pharmacological and nutritional properties. J Med Food 19:111–119. https://doi.org/10.1089/jmf.2015.3426

    Article  CAS  PubMed  Google Scholar 

  5. Israel A, Einav R, Seckbach J (2010) Seaweeds and their role in globally changing environments, vol 15, 1st edn. Springer Science & Business Media, New York, p480. https://doi.org/10.1007/978-90-481-8569-6

  6. Stekoll MS, Lin R, Lindstrom SC (1999) Porphyra cultivation in Alaska: conchocelis growth of three indigenous species. Hydrobiologia 398:291–297. https://doi.org/10.1023/A:1017043813609

    Article  Google Scholar 

  7. Belghit I, Rasinger JD, Heesch S, Biancarosa I, Liland N, Torstensen B, Waagbø R, Lock EJ, Bruckner CG (2017) In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae. Algal Res 26:240–249. https://doi.org/10.1016/j.algal.2017.08.001

    Article  Google Scholar 

  8. MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543. https://doi.org/10.1111/j.1753-4887.2007.tb00278.x

    Article  PubMed  Google Scholar 

  9. Kim JK, Yarish C, Hwang EK, Park M, Kim Y (2017) Seaweed aquaculture : cultivation technologies, challenges and its ecosystem services. Algae 32:1–13. https://doi.org/10.4490/algae.2017.32.3.3

    Article  CAS  Google Scholar 

  10. Zemke-White WL, Ohno M (1999) World seaweed utilisation: an end-of-century summary. J Appl Phycol 11:369–376. https://doi.org/10.1023/A:1008197610793

    Article  Google Scholar 

  11. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597. https://doi.org/10.1007/s10811-010-9632-5

    Article  CAS  Google Scholar 

  12. Noda H (1993) Health benefits and nutritional properties of nori. J Appl Phycol 5:255–258. https://doi.org/10.1007/BF00004027

    Article  Google Scholar 

  13. Smith JL, Summers G, Wong R (2017) Nutrient and heavy metal content of edible seaweeds in New Zealand. 38(1):19–28. https://doi.org/10.1080/01140671003619290

  14. Fleurence J, Chenard E, Luçon M (1999) Determination of the nutritional value of proteins obtained from Ulva armoricana. J Appl Phycol 11:231–239. https://doi.org/10.1023/A:1008067308100

    Article  CAS  Google Scholar 

  15. Chronakis IS (2000) Biosolar proteins from aquatic algae. In: Doxastakis G, Kiosseoglou V (eds) Novel macromolecules in food systems, vol 41. Elsevier, Amsterdam, pp 39–75

  16. Sánchez-Machado DI, López-Cervantes J, López-Hernández J, Paseiro-Losada P (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444. https://doi.org/10.1016/j.foodchem.2003.08.001

    Article  CAS  Google Scholar 

  17. McHugh DJ (2003) A guide to the seaweed industry. Food and Agriculture Organization of the United Nations, Fish Tech Pap 441, Rome, Italy 105

  18. Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336. https://doi.org/10.1016/j.foodchem.2005.11.029

    Article  CAS  Google Scholar 

  19. Patarra RF, Paiva L, Neto AI, Lima E, Baptista J (2011) Nutritional value of selected macroalgae. J Appl Phycol 23:205–208. https://doi.org/10.1007/s10811-010-9556-0

    Article  CAS  Google Scholar 

  20. Cian RE, Fajardo MA, Alaiz M et al (2014) Chemical composition, nutritional and antioxidant properties of the red edible seaweed Porphyra columbina. Int J Food Sci Nutr 65:299–305. https://doi.org/10.3109/09637486.2013.854746

  21. Cofrades S, López-López I, Bravo L et al (2010) Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Sci Technol Int 16:361–370. https://doi.org/10.1177/1082013210367049

    Article  CAS  PubMed  Google Scholar 

  22. MišurCoVá L, KráčMar S, KLeJduS B, VaCeK J (2010) Nitrogen content, dietary fiber, and digestibility in algal food products. Czech J Food Sci 28:27–35. https://doi.org/10.17221/111/2009-CJFS

    Article  Google Scholar 

  23. Stack J, Tobin PR, Gietl A, Harnedy PA, Stengel DB, FitzGerald RJ (2017) Seasonal variation in nitrogenous components and bioactivity of protein hydrolysates from Porphyra dioica. J Appl Phycol 29(5):2439–2450. https://doi.org/10.1007/s10811-017-1063-0

    Article  CAS  Google Scholar 

  24. Nam-Gil K (1999) Culture studies of Porphyra dentata and Porphyra pseudolinearis (Bangiales, Rhodophyta), two dioecious species from Korea. Sixteenth International Seaweed Symposium vol 135. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4449-0_15

  25. Bito T, Tanioka Y, Watanabe F (2018) Characterization of vitamin B12 compounds from marine foods. Fish Sci 84:747–755. https://doi.org/10.1007/s12562-018-1222-5

    Article  CAS  Google Scholar 

  26. Urbano MG, Goi I (2002) Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chem 76:281–286. https://doi.org/10.1016/S0308-8146(01)00273-4

    Article  CAS  Google Scholar 

  27. Bleakley S, Hayes M (2017) Algal proteins: extraction, application, and challenges concerning production. Foods 6:33. https://doi.org/10.3390/foods6050033

    Article  CAS  PubMed Central  Google Scholar 

  28. Zhang Q, Li N, Liu X, Zhao Z, Li Z, Xu Z (2004) The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr Res 339:105–111. https://doi.org/10.1016/j.carres.2003.09.015

  29. Zhao T, Zhang Q, Qi H, Zhang H, Niu X, Xu Z, Li Z (2006) Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. Int J Biol Macromol 38:45–50. https://doi.org/10.1016/j.ijbiomac.2005.12.018

    Article  CAS  PubMed  Google Scholar 

  30. Alban S, Schauerte A, Franz G (2002) Anticoagulant sulfated polysaccharides: part I. Synthesis and structure–activity relationships of new pullulan sulfates. Carbohydr Polym 47:267–276. https://doi.org/10.1016/S0144-8617(01)00178-3

    Article  CAS  Google Scholar 

  31. Zhao M, Sun L, Sun S, Gong X, Fu X, Chen M (2013) The 42. 1 and 53. 7 kDa bands in SDS-PAGE of R-Phycoerythrin from Polysiphonia urceolata. Int J Biol Macromol 60:405–411. https://doi.org/10.1016/j.ijbiomac.2013.06.009

  32. Llewellyn CA, Airs RL (2010) Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar Drugs 8:1273–1291. https://doi.org/10.3390/md8041273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm Des 9:1297–1308. https://doi.org/10.2174/1381612033454892

    Article  CAS  PubMed  Google Scholar 

  34. Agyei D (2015) Bioactive proteins and peptides from soybeans. Recent Pat Food Nutr Agric 7:100–107. https://doi.org/10.2174/2212798407666150629134141

    Article  CAS  PubMed  Google Scholar 

  35. Pihlanto-Leppala A (2002) Milk proteins | Bioactive peptides. In: Hubert R (ed) Encyclopedia of dairy sciences. Elsevier, Oxford 1960

    Google Scholar 

  36. Suetsuna K (1998) Purification and identification of angiotensin I-converting enzyme inhibitors from the red alga Porphyra yezoensis. J Mar Biotechnol 6:163–167

    CAS  PubMed  Google Scholar 

  37. Saito M, Hagino H (2005) Antihypertensive effect of oligopeptides derived from nori (Porphyra yezoensis) and Ala-Lys-Tyr-Ser- Tyr in rats. J Jpn Soc Nutr Food Sci 58:177–184

    Article  CAS  Google Scholar 

  38. Indumathi P, Mehta A (2016) A novel anticoagulant peptide from the Nori hydrolysate. J Funct Foods 20:606–617. https://doi.org/10.1016/j.jff.2015.11.016

    Article  CAS  Google Scholar 

  39. Guedes A, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnol Prog 27:597–613. https://doi.org/10.1002/btpr.575

    Article  CAS  PubMed  Google Scholar 

  40. Heo S-J, Cha S-H, Lee K-W, Jeon Y-J (2006) Antioxidant activities of red algae from Jeju Island. Algae 21:149–156. https://doi.org/10.4490/algae.2006.21.1.149

    Article  Google Scholar 

  41. Gong G, Zhao J, Wang C, Wei M, Dang T, Deng Y, Sun J, Song S, Huang L, Wang Z (2018) Structural characterization and antioxidant activities of the degradation products from Porphyra haitanensis polysaccharides. Process Biochem 74:185–193. https://doi.org/10.1016/j.procbio.2018.05.022

  42. Yabuta Y, Fujimura H, Kwak CS et al (2010) Antioxidant activity of the Phycoerythrobilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci Technol Res 16:347–352. https://doi.org/10.3136/fstr.16.347

    Article  CAS  Google Scholar 

  43. Cian RE, Salgado PR, Drago SR, González RJ, Mauri AN (2014) Development of naturally activated edible films with antioxidant properties prepared from red seaweed Porphyra columbina biopolymers. Food Chem 146:6–14. https://doi.org/10.1016/j.foodchem.2013.08.133

    Article  CAS  PubMed  Google Scholar 

  44. Chen X, Wu M, Yang Q, Wang S (2017) Preparation, characterization of food grade phycobiliproteins from Porphyra haitanensis and the application in liposome-meat system. LWT - Food Sci Technol 77:468–474. https://doi.org/10.1016/j.lwt.2016.12.005

    Article  CAS  Google Scholar 

  45. Isaka S, Cho K, Nakazono S, Abu R, Ueno M, Kim D, Oda T (2015) Antioxidant and anti-inflammatory activities of porphyran isolated from discolored Nori (Porphyra yezoensis). Int J Biol Macromol 74:68–75. https://doi.org/10.1016/j.ijbiomac.2014.11.043

    Article  CAS  PubMed  Google Scholar 

  46. Parimelazhagan I, Mehta A (2017) Changes in the antioxidant potential of nori sheets during in vitro digestion with pepsin. J Aquat Food Prod Technol 26:163–171. https://doi.org/10.1080/10498850.2015.1125981

    Article  CAS  Google Scholar 

  47. Torres P, Santos JP, Chow F, Pena Ferreira MJ, dos Santos DYAC (2018) Comparative analysis of in vitro antioxidant capacities of mycosporine-like amino acids (MAAs). Algal Res 34:57–67. https://doi.org/10.1016/j.algal.2018.07.007

    Article  Google Scholar 

  48. Gacesa R, Lawrence KP, Georgakopoulos ND, Yabe K, Dunlap WC, Barlow DJ, Wells G, Young AR, Long PF (2018) The mycosporine-like amino acids porphyra-334 and shinorine are antioxidants and direct antagonists of Keap1-Nrf2 binding. Biochimie 154:35–44. https://doi.org/10.1016/j.biochi.2018.07.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang X, Chen G, Chen R (2007) Study on the effects of Porphyra polysaccharide sulfate (pps) on immunoregulation function in mice [J]. Mod Prev Med 14:2

    Google Scholar 

  50. Liu QM, Xu SS, Li L et al (2017) In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydr Polym 165:189–196. https://doi.org/10.1016/j.carbpol.2017.02.032

    Article  CAS  PubMed  Google Scholar 

  51. Shin ES, Hwang HJ, Kim IH, Nam TJ (2011) A glycoprotein from Porphyra yezoensis produces anti-inflammatory effects in liposaccharide-stimulated macrophages via the TLR4 signaling pathway. Int J Mol Med 28:809–815. https://doi.org/10.3892/ijmm.2011.729

    Article  CAS  PubMed  Google Scholar 

  52. Cian RE, Martínez-Augustin O, Drago SR (2012) Bioactive properties of peptides obtained by enzymatic hydrolysis from protein by products of Porphyra columbina. Food Res Int 49(1):364–372. https://doi.org/10.1016/j.foodres.2012.07.003

    Article  CAS  Google Scholar 

  53. Yanagido A, Ueno M, Jiang Z, Cho K, Yamaguchi K, Kim D, Oda T (2018) Increase in anti-inflammatory activities of radical-degraded porphyrans isolated from discolored Nori (Pyropia yezoensis). Int J Biol Macromol 117:78–86. https://doi.org/10.1016/j.ijbiomac.2018.05.146

    Article  CAS  PubMed  Google Scholar 

  54. Kearney PM, Whelton M, Reynolds K, Whelton PK, He J (2004) Worldwide prevalence of hypertension: a systematic review. J Hypertens 22:11–19

    Article  CAS  PubMed  Google Scholar 

  55. Kajimoto O (2004) Hypotensive effect and safety of the granular foods containing oligo peptides derived from Nori (Porphya yezoensis) in subjects with high-normal blood pressure. J Nutr Food 7:43–58

    Google Scholar 

  56. Qu W, Ma H, Pan Z, Luo L, Wang Z, He R (2010) Preparation and antihypertensive activity of peptides from Porphyra yezoensis. Food Chem 123:14–20. https://doi.org/10.1016/j.foodchem.2010.03.091

    Article  CAS  Google Scholar 

  57. Qu W, Ma H, Li W, Pan Z, Owusu J, Venkitasamy C (2015) Performance of coupled enzymatic hydrolysis and membrane separation bioreactor for antihypertensive peptides production from Porphyra yezoensis protein. Process Biochem 50:245–252. https://doi.org/10.1016/j.procbio.2014.11.010

    Article  CAS  Google Scholar 

  58. Cian RE, Alaiz M, Vioque J, Drago SR (2013) Enzyme proteolysis enhanced extraction of ACE inhibitory and antioxidant compounds (peptides and polyphenols) from Porphyra columbina residual cake. J Appl Phycol 25:1197–1206. https://doi.org/10.1007/s10811-012-9913-2

    Article  CAS  Google Scholar 

  59. Sithranga Boopathy N, Kathiresan K (2011) Anticancer drugs from marine flora: an overview. J Oncol 2010:1–8. https://doi.org/10.1155/2010/214186

    Article  CAS  Google Scholar 

  60. Tsai C-J, Sun Pan B (2012) Identification of sulfoglycolipid bioactivities and characteristic fatty acids of marine macro algae. J Agric Food Chem 60:8404–8410. https://doi.org/10.1021/jf302241d

    Article  CAS  PubMed  Google Scholar 

  61. Pan Q, Chen M, Li J, Wu Y, Zhen C, Liang B (2013) Antitumor function and mechanism of phycoerythrin from Porphyra haitanensis. Biol Res 46:87–95. https://doi.org/10.4067/S0716-97602013000100013

  62. Yu X, Zhou C, Yang H, Huang X, Ma H, Qin X, Hu J (2015) Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis. Carbohydr Polym 117:650–656. https://doi.org/10.1016/j.carbpol.2014.09.086

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Z, Zhang Q, Wang J, Song H, Zhang H, Niu X (2010) Regioselective syntheses of sulfated porphyrans from Porphyra haitanensis and their antioxidant and anticoagulant activities in vitro. Carbohydr Polym 79:1124–1129. https://doi.org/10.1016/j.carbpol.2009.10.055

    Article  CAS  Google Scholar 

  64. Nasri M (2017) Protein hydrolysates and biopeptides: production, biological activities, and applications in foods and health benefits. A review, 1st ed. Adv Food Nutr Res 81:109–159. https://doi.org/10.1016/bs.afnr.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  65. Uribe E, Vega-Gálvez A, Heredia V, Pastén A, di Scala K (2018) An edible red seaweed (Pyropia orbicularis): influence of vacuum drying on physicochemical composition, bioactive compounds, antioxidant capacity, and pigments. J Appl Phycol 30:673–683. https://doi.org/10.1007/s10811-017-1240-1

    Article  CAS  Google Scholar 

  66. Tamura Y, Takenaka S, Sugiyama S, Nakayama R (1998) Occurrence of anserine as an antioxidative dipeptide in a red alga, Porphyra yezoensis. Biosci Biotechnol Biochem 62:561–563. https://doi.org/10.1271/bbb.62.561

    Article  CAS  PubMed  Google Scholar 

  67. Senevirathne M, Ahn CB, Je JY (2010) Enzymatic extracts from edible red algae, Porphyra tenera, and their antioxidant, anti-acetylcholinesterase, and anti-inflammatory activities. Food Sci Biotechnol 19:1551–1557. https://doi.org/10.1007/s10068-010-0220-x

    Article  Google Scholar 

  68. Nishiguchi T, Cho K, Isaka S, Ueno M, ** JO, Yamaguchi K, Kim D, Oda T (2016) Protective effect of porphyran isolated from discolored nori (Porphyra yezoensis) on lipopolysaccharide-induced endotoxin shock in mice. Int J Biol Macromol 93:1273–1278. https://doi.org/10.1016/j.ijbiomac.2016.09.091

    Article  CAS  PubMed  Google Scholar 

  69. Jiang Z, Hama Y, Yamaguchi K, Oda T (2012) Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages. J Biochem 151:65–74. https://doi.org/10.1093/jb/mvr115

    Article  CAS  PubMed  Google Scholar 

  70. Cian RE, López-Posadas R, Drago SR, Medina FS, Martínez-Augustin O (2012) Immunomodulatory properties of the protein fraction from Porphyra columbina. J Agric Food Chem 60:8146–8154. https://doi.org/10.1021/jf300928j

  71. Cian RE, López-Posadas R, Drago SR, Sánchez de Medina F, Martínez-Augustin O (2012) A Porphyra columbina hydrolysate upregulates IL-10 production in rat macrophages and lymphocytes through an NF-γB, and p38 and JNK dependent mechanism. Food Chem 134:1982–1990. https://doi.org/10.1016/j.foodchem.2012.03.134

  72. Becker K, Hartmann A, Ganzera M, Fuchs D, Gostner J (2016) Immunomodulatory effects of the mycosporine-like amino acids shinorine and porphyra-334. Mar Drugs 14:119. https://doi.org/10.3390/md14060119

    Article  CAS  PubMed Central  Google Scholar 

  73. Sakai S, Komura Y, Nishimura Y et al (2011) Inhibition of mast cell degranulation by phycoerythrin and its pigment moiety phycoerythrobilin, prepared from Porphyra yezoensis. Food Sci Technol Res 17:171–177. https://doi.org/10.3136/fstr.17.171

  74. Kazłowska K, Hsu T, Hou CC, Yang WC, Tsai GJ (2010) Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. J Ethnopharmacol 128:123–130. https://doi.org/10.1016/j.jep.2009.12.037

    Article  CAS  PubMed  Google Scholar 

  75. Kwon MJ, Nam TJ (2006) Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79:1956–1962. https://doi.org/10.1016/j.lfs.2006.06.031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support and facilities provided by the management of Vellore Institute of Technology, Vellore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Mehta.

Ethics declarations

Conflict of Interest

The authors Kalkooru L. Venkatraman and Alka Mehta declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, K.L., Mehta, A. Health Benefits and Pharmacological Effects of Porphyra Species. Plant Foods Hum Nutr 74, 10–17 (2019). https://doi.org/10.1007/s11130-018-0707-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-018-0707-9

Keywords

Navigation