Log in

Multiparty mediated quantum secret sharing protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This study proposes a multiparty mediated quantum secret sharing (MQSS) protocol that allows n restricted quantum users to share a secret via the assistance of a dishonest third-party with full quantum capabilities. Under the premise that a restricted quantum user can only perform the Hadamard transformation and the Z-basis measurement, the proposed MQSS protocol has addressed two common challenges in the existing semi-quantum secret sharing protocols: (1) the dealer must have full quantum capability, and (2) the classical users must equip with the wavelength quantum filter and the photon number splitters to detect the Trojan horse attacks. The security analysis has also delivered proof to show that the proposed MQSS protocol can avoid the collective attack, the collusion attack, and the Trojan horse attacks. In addition, the proposed MQSS protocol is more efficient than the existing SQSS protocols due to the restricted quantum users can only equip with two quantum operations, and the qubits are transmitted within a shorter distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on IEEE Computer Society, pp. 313–313 (1979)

  3. Iftene, S.: General secret sharing based on the Chinese remainder theorem with applications in e-voting. Electron. Notes Theor. Comput. Sci. 186, 67–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hillery, M., Buzk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  6. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: “Entanglement swap** of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Article  ADS  Google Scholar 

  7. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)

    Article  ADS  Google Scholar 

  8. Chau, H.F.: Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys. Rev. A 66, 060302 (2002)

    Article  ADS  Google Scholar 

  9. Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 67, 044302 (2003)

    Article  ADS  Google Scholar 

  10. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Li, Y.M., Zhang, K.S., Peng, K.C.: Multiparty secret sharing of quantum information based on entanglement swap**. Phys. Lett. A 324, 420 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  13. **ao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  14. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340, 43 (2005)

    Article  ADS  MATH  Google Scholar 

  16. Zhang, Y.Q., **, X.R., Zhang, S.: Secret sharing of quantum information via entanglement swap** in cavity QED. Phys. Lett. A 341, 380 (2005)

    Article  ADS  MATH  Google Scholar 

  17. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  18. Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  20. Wang, H.F., Ji, X., Zhang, S.: Improving the security of multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A 358, 11 (2006)

    Article  ADS  MATH  Google Scholar 

  21. Li, C.M., Chang, C.C., Hwang, T.: Comment on quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 73, 016301 (2006)

    Article  ADS  Google Scholar 

  22. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A 354, 190 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A: Math. Theor. 39, 14089 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Takesue, H., Inoue, K.: Quantum secret sharing based on modulated high-dimensional time-bin entanglement. Phys. Rev. A 74, 012315 (2006)

    Article  ADS  Google Scholar 

  25. Xue, Z.Y., Yi, Y.M., Cao, Z.L.: Scheme for sharing classical information via tripartite entangled states. Chin. Phys. B 15, 01421 (2006)

    Article  Google Scholar 

  26. Zhou, P., Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient three-party quantum secret sharing with single photons. Chin. Phys. Lett. 24, 2181 (2007)

    Article  ADS  Google Scholar 

  27. Xue, Z.Y., Yi, Y.M., Cao, Z.L.: Scheme for implementing quantum information sharing via tripartite entangled state in cavity QED. Physica A 374, 119 (2007)

    Article  ADS  Google Scholar 

  28. He, G.P.: Comment on experimental single qubit quantum secret sharing. Phys. Rev. Lett. 98, 028901 (2007)

    Article  ADS  Google Scholar 

  29. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Improving the security of multiparty quantum secret sharing based on the improved Boström-Felbinger protocol. Opt. Commun. 281, 4553 (2008)

    Article  ADS  Google Scholar 

  30. Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)

    Article  ADS  Google Scholar 

  31. **a, Y., Song, J., Song, H.S.: Quantum state sharing using linear optical elements. Opt. Commun. 281, 4946 (2008)

    Article  ADS  Google Scholar 

  32. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un)biased bases. Phys. Rev. A 78, 012344 (2008)

    Article  ADS  Google Scholar 

  33. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Deng, F.G., Li, X.H., Zhou, H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372, 1957 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdrop**-check character. Quantum Inf. Process. 12, 55 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Sarvepalli, P.K., Klappenecker, A.: Sharing classical secrets with Calderbank–Shor–Steane codes. Phys. Rev. A 80, 022321 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Gao, G.: Reexamining the security of the improved quantum secret sharing scheme. Opt. Commun. 282, 4464 (2009)

    Article  ADS  Google Scholar 

  38. Gao, G.: Multiparty quantum secret sharing using two-photon three-dimensional Bell states. Commun. Theor. Phys. 52, 421 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Gao, G., Wang, L.P.: An efficient multiparty quantum secret sharing protocol based on Bell states in the high dimension Hilbert space. Int. J. Theor. Phys. 49, 2852 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gao, G.: Cryptanalysis of multiparty quantum secret sharing with collective eavesdrop**-check. Opt. Commun. 283, 2997 (2010)

    Article  ADS  Google Scholar 

  41. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 062315 (2010)

    Article  ADS  Google Scholar 

  42. Hao, L., Li, J.L., Long, G.L.: Eavesdrop** in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China-Phys. Mech. 53, 491 (2010)

    Article  Google Scholar 

  43. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639 (2011)

    Article  ADS  Google Scholar 

  44. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)

    Article  ADS  Google Scholar 

  45. Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302 (2015)

    Article  ADS  Google Scholar 

  46. Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 31, 1750150 (2017)

    Article  ADS  Google Scholar 

  47. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99, 140501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)

    Article  ADS  Google Scholar 

  49. Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum key distribution using entangled states. Chinese Phys. Lett. 28, 100301 (2011)

    Article  ADS  Google Scholar 

  50. Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A: Math. Theor. 26, 045304 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Yang, C.W., Hwang, T.: Efficient key construction on semi-quantum secret sharing protocols. Int. J. Quantum Info. 11(5), 1350052 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. **e, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819–3824 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. **ang, Y., Liu, J., Bai, M.-Q., Yang, X., Mo, Z.-W.: Limited resource semi-quantum secret sharing based on multi-level systems. Int. J. Theor. Phys. 58(9), 2883–2892 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ye, C.-Q., Ye, T.-Y.: Circular semi-quantum secret sharing using single particles. Commun. Theor. Phys. 70(6), 661 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Li, Z., Li, Q., Liu, C., Peng, Y., Chan, W.H., Li, L.: Limited resource semiquantum secret sharing. Quantum Inf. Process. 17(10), 285 (2018)

    Article  ADS  MATH  Google Scholar 

  56. Ye, C.-Q., Ye, T.-Y., He, D., Gan, Z.-G.: Multiparty semi-quantum secret sharing with d-level single-particle states. Int. J. Theor. Phys., pp. 1–18 (2019)

  57. Yu, K.-F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 194 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 31(13), 1750150 (2017)

    Article  ADS  Google Scholar 

  59. Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30, 1650130 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  60. Yin, A.H., Tong, Y.: A novel semi-quantum secret sharing scheme using entangled states. Mod. Phys. Lett. B 1850256 (2018)

  61. Cao, G., Chen, C., Jiang, M.: A scalable and flexible multi-user semi-quantum secret sharing. In: Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering, pp. 28–32. ACM (2018)

  62. Tsai, C.-W., Yang, C.-W., Lee, N.-Y.: Semi-quantum secret sharing protocol using W-state. Mod. Phys. Lett. A 34(27), 1950213 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Tsai, C.-W., Chang, Y.-C., Lai, Y.-H., Yang, C.-W.: Cryptanalysis of limited resource semi-quantum secret sharing. Quantum Inf. Process. 19(8), 1–8 (2020)

    Article  ADS  Google Scholar 

  64. Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91, 032323 (2015)

    Article  ADS  Google Scholar 

  65. Biham, E., Boyer, M., Brassard, G., Van De Graaf, J., Mor, T.: Security of quantum key distribution against all collective attacks. Algorithmica 34(4), 372–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  66. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev Mod Phys 81(3), 1301–1350 (2009)

    Article  ADS  Google Scholar 

  67. Vlachou, C., Krawec, W., Mateus, P., Paunkovc, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1–127 (2008)

    Article  MATH  Google Scholar 

  69. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  70. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  71. Cai, Q.Y.: Eavesdrop** on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers and the editor for their very valuable comments, which greatly enhanced the clarity of this paper. This research was partially supported by the Ministry of Science and Technology, Taiwan, R.O.C. (Grant Nos. MOST 110-2221-E-039-004, MOST 110-2221-E-143-003, MOST 110-2221-E-259-001, MOST 110-2221-E-143-004, MOST 110-2222-E-005-006, MOST 110-2218-E-005-008-MBK, and MOST 110-2634-F-005-006), and China Medical University, Taiwan (Grant No. CMU110-S-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CW., Yang, CW. & Lin, J. Multiparty mediated quantum secret sharing protocol. Quantum Inf Process 21, 63 (2022). https://doi.org/10.1007/s11128-021-03402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03402-8

Keywords

Navigation