Log in

Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Three environment-assisted schemes are proposed to suppress the amplitude dam** decoherence for entanglement distribution via weak measurement reversal. Based on the measurement of environment and appropriate weak measurement reversal operations, the initial entangled state can be recovered between two separated participants with high success probability and fidelity. In some specific cases, the restored optimal concurrence could reach up to 1 without requirement of the reversing measurement. Moreover, we concretely show that the proposed environment-assisted entanglement restoration can be applied to quantum teleportation to significantly improve the fidelity of the teleported state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. 13, 1789–1811 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. Lond. A 459, 2011–2032 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Orús, R., Latorre, J.I.: Universality of entanglement and quantum-computation complexity. Phys. Rev. A 69, 052308 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  7. Chang, Y., Zhang, S.B., Yan, L.L., Li, J.: Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad. Chin. Sci. Bull. 59, 2835 (2014)

    Article  Google Scholar 

  8. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59, 2541 (2014)

    Article  Google Scholar 

  9. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696–1702 (2014)

    Article  ADS  Google Scholar 

  10. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238–1243 (2014)

    Article  ADS  Google Scholar 

  11. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  12. Su, X.L., Jia, X.J., **e, C.D., Peng, K.C.: Preparation of multipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57, 1210–1217 (2014)

    Article  ADS  Google Scholar 

  13. Schukla, C., Pathak, A.: Orthogonal-state-based deterministic secure quantum communication without actual transmission of the message qubits. Quantum Inf. Process. 13, 2099–2113 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  14. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195–2210 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  15. Messamah, J., Schroeck, F.E., Jr, Hachemane, M., Smida, A., Hamici, A.H.: Quantum mechanics on phase space and teleportation. Quantum Inf. Process. 14, 1035–1054 (2015)

  16. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141–141 (2015)

    Article  Google Scholar 

  17. Plama, G.M., Suominen, K.-A., Ekert, A.K.: Quantum computers and dissipation. Proc. R. Soc. Lond. A 452, 567–584 (1996)

    Article  ADS  Google Scholar 

  18. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998)

    Article  ADS  Google Scholar 

  19. Kwiat, P.G., Berglund, A.J., Alterpeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000)

    Article  ADS  Google Scholar 

  20. Wang, H.-F., Zhang, S., Zhu, A.-D., Yi, X.X., Yeon, K.-H.: Local conversion of four Einstein-Podolsky-Rosen photon pairs into four-photon polarization-entangled decoherence-free states with non-photon-number-resolving detectors. Opt. Express 19, 25433–25440 (2011)

    Article  ADS  Google Scholar 

  21. Liu, A.-P., Cheng, L.-Y., Chen, L., Su, S.-L., Wang, H.-F., Zhang, S.: Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator. Opt. Commun. 313, 180–185 (2014)

    Article  ADS  Google Scholar 

  22. Facchi, P., Lindar, D.A., Pascazio, S.: Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004)

    Article  ADS  Google Scholar 

  23. Wang, S.-C., Li, Y., Wang, X.-B., Kwek, L.C.: Operator quantum Zeno effect: protecting quantum information with noisy two-qubit interactions. Phys. Rev. Lett. 110, 100505 (2013)

    Article  ADS  Google Scholar 

  24. Gregoratti, M., Werner, R.F.: Quantum lost and found. J. Mod. Opt. 50, 915–933 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Trendelkamp-Schroer, B., Helm, J., Strunz, W.T.: Environment-assisted error correction of single-qubit phase dam**. Phys. Rev. A 84, 062314 (2011)

    Article  ADS  Google Scholar 

  26. Koashi, M., Ueda, M.: Reversing measurement and probabilistic quantum error correction. Phys. Rev. Lett. 82, 2598–2601 (1999)

    Article  ADS  Google Scholar 

  27. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  28. Kim, Y.-S., Cho, Y.-W., Ra, Y.-S., Kim, Y.-H.: Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009)

    Article  ADS  Google Scholar 

  29. Sun, Q., Al-Amri, M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  30. Ashhab, S., Nori, F.: Control-free control: manipulating a quantum system using only a limited set of measurements. Phys. Rev. A 82, 062103 (2010)

    Article  ADS  Google Scholar 

  31. Lee, J.-C., Jeong, Y.-C., Kim, Y.-S., Kim, Y.-H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011)

    Article  ADS  Google Scholar 

  32. Li, Y.-L., ** decoherence by weak measurement reversal. Quantum Inf. Process. 12, 3067–3077 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Wang, Y.-K., Ma, T., Fan, H., Fei, S.-M., Wang, Z.-X.: Super-quantum correlation and geometry for Bell-diagonal states with weak measurements. Quantum Inf. Process. 13, 283–297 (2014)

    Article  MATH  Google Scholar 

  34. **ao, X., Feng, M.: Reexamination of the feedback control on quantum states via weak measurements. Phys. Rev. A 83, 054301 (2011)

    Article  ADS  Google Scholar 

  35. Kim, Y.-S., Lee, J.-C., Kwon, O., Kim, Y.-H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012)

    Article  Google Scholar 

  36. Yao, C., Ma, Z.-H., Chen, Z.-H., Serafini, A.: Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal. Phys. Rev. A 86, 022312 (2012)

    Article  ADS  Google Scholar 

  37. Song, W., Yang, M., Cao, Z.-L.: Purifying entanglement of noisy two-qubit states via entanglement swap**. Phys. Rev. A 89, 014303 (2014)

    Article  ADS  Google Scholar 

  38. Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209–3215 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Man, Z.-X., **a, Y.-J., An, N.B.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and post measurements. Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  40. Man, Z.-X., **a, Y.-J., An, N.B.: Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  41. Man, Z.-X., **a, Y.-J., An, N.B.: On-demand control of coherence transfer between interacting qubits surrounded by a dissipative environment. Phys. Rev. A 89, 013852 (2014)

    Article  ADS  Google Scholar 

  42. Man, Z.-X., An, N.B., **a, Y.-J., Kim, J.: Controllable entanglement transfer via two parallel spin chains. Phys. Lett. A 378, 2063–2069 (2014)

    Article  ADS  Google Scholar 

  43. Man, Z.-X., An, N.B., **a, Y.-J.: Improved quantum state transfer via quantum partially collapsing measurements. Ann. Phys. 349, 209–219 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  44. Man, Z.-X., An, N.B., **a, Y.-J., Kim, J.: Universal scheme for finite-probability perfect transfer of arbitrary multispin states through spin chains. Ann. Phys. 351, 739–750 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  45. Wang, K., Zhao, X., Yu, T.: Environment-assisted quantum state restoration via weak measurements. Phys. Rev. A 89, 042320 (2014)

    Article  ADS  Google Scholar 

  46. Katz, N., Neeley, M., Ansmannn, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M., Korotkov, A.N.: Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  47. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  48. Sun, Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  49. Tan, Q.-Y., Wang, L., Li, J.-X., Tang, J.-W., Wang, X.-W.: Amplitude-dam** decoherence suppression of two-qubit entangled states by weak measurements. Int. J. Theor. Phys. 52, 612–619 (2013)

    Article  MATH  Google Scholar 

  50. Lim, H.-T., Lee, J.-C., Hong, K.-H., Kim, Y.-H.: Avoiding entanglement sudden death using single-qubit quantum measurement reversal. Opt. Express 22, 19055–19068 (2014)

    Article  ADS  Google Scholar 

  51. Weisskopf, V.F., Wigner, E.P.: Calculation of the natural brightness of spectral lines on the basis of Dirac’s theory. Z. Phys. 63, 54–73 (1930)

    Article  ADS  MATH  Google Scholar 

  52. Zhou, L., Sheng, Y.B.: Concurrence measurement for the two-qubit optical and atomic states. Entropy 17, 4293–4322 (2015)

    Article  ADS  Google Scholar 

  53. Walborn, S.P., Souto Ribeiro, P.H., Davidovich, L., Mintert, F., Buchleitner, A.: Experimental determination of entanglement with a single measurement. Nature 440, 1022–1024 (2006)

    Article  ADS  Google Scholar 

  54. Zhou, L., Sheng, Y.B.: Detection of nonlocal atomic entanglement assisted by single photons. Phys. Rev. A 90, 024301 (2014)

    Article  ADS  Google Scholar 

  55. Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963–978 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  57. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  58. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou Zhang.

Additional information

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61465013, 11465020, and 11264042; the Program for Chun Miao Excellent Talents of Jilin Provincial Department of Education under Grant No. 201316; and the Talent Program of Yanbian University of China under Grant No. 950010001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XM., Cheng, LY., Liu, AP. et al. Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf Process 14, 4147–4162 (2015). https://doi.org/10.1007/s11128-015-1111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1111-0

Keywords

Navigation