Log in

A simple closed-form approximation for the cumulative distribution function of the composite error of stochastic frontier models

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

This paper derives an analytic closed-form formula for the cumulative distribution function (cdf) of the composite error of the stochastic frontier analysis (SFA) model. Since the presence of a cdf is frequently encountered in the likelihood-based analysis with limited-dependent and qualitative variables as elegantly shown in the classic book of Maddala (Limited-dependent and qualitative variables in econometrics. Cambridge University Press, Cambridge, 1983), the proposed methodology is useful in the framework of the stochastic frontier analysis. We apply the formula to the maximum likelihood estimation of the SFA models with a censored dependent variable. The simulations show that the finite sample performance of the maximum likelihood estimator of the censored SFA model is very promising. A simple empirical example on the modeling of reservation wage in Taiwan is illustrated as a potential application of the censored SFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In the experiments, we estimate \( \xi \) with the following transformation function: \( \xi = \left( {\beta_{0} ,\beta_{1} ,\sigma_{u} ,\sigma_{v} } \right)^{\text{T}} = \kappa \left( {\tilde{\xi }} \right) \), where \( \tilde{\xi } = \left( {\beta_{0} ,\beta_{1} ,\ln \left( {\sigma_{u} } \right),\ln \left( {\sigma_{v} } \right)} \right)^{\text{T}} \) are the parameters actually estimated when conducting the MLE of the censored and uncensored SFA.

  2. The GAUSS program for the censored SFA is available upon request from the authors.

  3. More precisely, the initial value of \( \tilde{\xi } \) is set to be \( \tilde{\xi }_{0} = \kappa (\tilde{\xi })^{ - 1} + N(0,1) \).

References

  • Abramowitz M, Stegun IA (1970) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Aigner D, Lovell CAK, Schmidt P (1977) Formulation and Estimation of stochastic frontier production function models. J Econ 6:21–37

    Google Scholar 

  • Amemiya T (1985) Advanced econometrics. Harvard University Press, Cambridge

    Google Scholar 

  • Amsler C, Prokhorov A, Schmidt P (2011) Using copulas to model time dependence in stochastic frontier models. Working Paper, Michigan State University

  • Greene WH (2010) A stochastic frontier model with correction for sample selection. J Prod Anal 34:15–24

    Article  Google Scholar 

  • Hofler RA, Murphy KJ (1992) Underpaid and overworked: measuring the effects of imperfect information on wages. Econ Inquiry 30:511–529

    Article  Google Scholar 

  • Hofler RA, Murphy KJ (1994) Estimating reservation wages of workers using a stochastic frontier. South Econ J 60:961–976

    Article  Google Scholar 

  • Lai H, Huang CJ (2011) Maximum likelihood estimation of seemingly unrelated stochastic frontier regressions. Working Paper, National Chung Cheng University

  • Maddala GS (1983) Limited-dependent and qualitative variables in econometrics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Olson JA, Schmidt P, Waldman DM (1980) A Monte Carlo study of estimators of stochastic frontier production functions. J Econ 13:67–82

    Google Scholar 

  • Park TA, Lohr L (2007) Performance evaluation of university providers: a frontier approach for ordered response data. Eur J Oper Res 182:899–910

    Article  Google Scholar 

  • Polachek SW, Robst J (1998) Employee labor market information: comparing direct world of work measures of workers’ knowledge to stochastic frontier estimates. Labour Econ 5:231–242

    Article  Google Scholar 

  • Roy AD (1951) Some thoughts on the distribution of earnings. Oxf Econ Pap 3:135–146

    Google Scholar 

  • Tobin J (1958) Estimation of relationships for limited dependent variables. Econometrica 26:24–36

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Editor, Professor Sickles, and two anonymous referees for useful comments and suggestions. The research described in this paper was conducted in part while the second author was a visiting scholar at the Institute of Economics, Academia Sinica. The financial support from the National Science Council of Taiwan is also gratefully acknowledged. The usual disclaimer applies. We also thank for the excellent research assistance of Shih-Tang Hwu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jen Tsay.

Appendix

Appendix

This appendix shows the derivation of the approximated cumulative distribution function F app . Since \( a = \frac{\lambda }{\sigma } \ge 0 \), we divide the derivation into two parts: for \( \left( {Q \le 0,a \ge 0} \right) \) and \( \left( {Q \ge 0,a \ge 0} \right) \). Furthermore, for ease of exposition, two equations from Abramowitz and Stegun (1970, Eqs. 7.11 and 7.4.32) are given:

$$ \begin{aligned} & erf\left( z \right) = \frac{2}{\sqrt \pi }\int\limits_{0}^{z} {e^{{ - t^{2} }} dt} = 2\int\limits_{0}^{\sqrt 2 z} {\phi \left( t \right)dt} , \\ & \int {e^{{ - \left( {kx^{2} + 2mx + n} \right)}} } dx = \frac{1}{2}\sqrt {\frac{\pi }{k}} \, e^{{\tfrac{{m^{2} - kn}}{k}}} \, erf\left( {\sqrt k x + \frac{m}{\sqrt k }} \right) + C, \, k \ne 0, \\ \end{aligned} $$

where C denotes a finite constant.

Given that \( \left( {Q,a,b} \right) \in \) finite R, \( b > 0,\,erf\left( { - x} \right) = - erf\left( x \right) \), and define \( \varepsilon = \sqrt 2 v/a \), we have:

$$ \begin{aligned} I_{a \ge 0} & = \tfrac{\sqrt 2 }{a}\int\limits_{ - \infty }^{{\tfrac{a}{\sqrt 2 }Q}} {\left( {\int_{ - \infty }^{\sqrt 2 v} {\phi \left( \varsigma \right)d\varsigma } } \right)} \, \phi \left( {\sqrt 2 v\tfrac{b}{a}} \right)dv \\ \, & = \tfrac{\sqrt 2 }{2a}\int\limits_{ - \infty }^{{\tfrac{a}{\sqrt 2 }Q}} {\left( {1 + erf\left( v \right)} \right)} \, \phi \left( {\sqrt 2 v\tfrac{b}{a}} \right)dv \\ \, & = \tfrac{\sqrt 2 }{2a}\int\limits_{ - \infty }^{0} {1 + erf\left( v \right)} \, \phi \left( {\sqrt 2 v\tfrac{b}{a}} \right)dv + \tfrac{\sqrt 2 }{2a}\int\limits_{0}^{{\tfrac{a}{\sqrt 2 }Q}} {1 + erf\left( v \right)} \, \phi \left( {\sqrt 2 v\tfrac{b}{a}} \right)dv, \\ \end{aligned} $$

Note that erf(z) can be well approximated by a function, \( g(x) = 1 - e^{{c_{1} x + c_{2} x^{2} }} \) for x ≥ 0, where c 1 and c 2 are chosen to ensure that g(x) is as close to erf(x) as possible. The choice of c 1 and c 2 is discussed in Sect. 2.

With the preceding results of \( I_{a \ge 0} \left( Q \right) \), we then have

$$ \begin{aligned} I_{a \ge 0,Q \ge 0} \left( Q \right) & = \tfrac{\sqrt 2 }{2a}\int\limits_{ - \infty }^{0} {1 + erf\left( v \right)} \, \phi \left( {\sqrt 2 v\tfrac{b}{a}} \right)dv + \tfrac{\sqrt 2 }{2a}\int\limits_{0}^{{\tfrac{a}{\sqrt 2 }Q}} {1 + erf\left( v \right)} \, \phi \left( {\sqrt 2 v\tfrac{b}{a}} \right)dv \\ & = \tfrac{\sqrt 2 }{2a}\int\limits_{0}^{\infty } {1 - erf\left( v \right)} \, \phi \left( {\sqrt 2 v\tfrac{b}{a}} \right)dv + \tfrac{\sqrt 2 }{2a}\int\limits_{0}^{{\tfrac{a}{\sqrt 2 }Q}} {\left( {1 + erf\left( v \right)} \right)} \, \phi \left( {\sqrt 2 v\tfrac{b}{a}} \right)dv \\ & \; \approx \tfrac{\sqrt 2 }{2a}\int\limits_{0}^{\infty } {e^{{c_{1} v + c_{2} v^{2} }} \tfrac{1}{{\sqrt {2\pi } }}} \, e^{{ - \tfrac{{v^{2} b^{2} }}{{a^{2} }}}} dv + \tfrac{\sqrt 2 }{a}\int\limits_{0}^{{\tfrac{a}{\sqrt 2 }Q}} { \, \tfrac{1}{{\sqrt {2\pi } }}e^{{ - \tfrac{{v^{2} b^{2} }}{{a^{2} }}}} } dv \\ & \; - \tfrac{\sqrt 2 }{2a}\int\limits_{0}^{{\tfrac{a}{\sqrt 2 }Q}} { \, \left( {e^{{c_{1} v + c_{2} v^{2} }} } \right)\tfrac{1}{{\sqrt {2\pi } }}e^{{ - \tfrac{{v^{2} b^{2} }}{{a^{2} }}}} } dv \\ & = \tfrac{1}{2\sqrt \pi a}\int\limits_{0}^{\infty } {exp\left( { - \left( {\tfrac{{b^{2} - a^{2} c_{2} }}{{a^{2} }}} \right)v^{2} + c_{1} v} \right)dv} \\ & \; + \tfrac{1}{\sqrt \pi a}\int\limits_{0}^{{\tfrac{b}{\sqrt 2 }Q}} { \, exp\left( { - v^{2} } \right)d\left( {\tfrac{a}{b}v} \right)} - \tfrac{1}{2\sqrt \pi a}\tfrac{a}{\sqrt 2 }Q\int\limits_{0}^{{}} {exp\left( { - \left( {\tfrac{{b^{2} - a^{2} c_{2} }}{{a^{2} }}} \right)v^{2} + c_{1} v} \right)dv} . \\ \end{aligned} $$

when we use (7.4.32) of Abramowitz and Stegun (1970), \( I_{a \ge 0,Q \ge 0} \) can be approximated by:

$$ \begin{aligned} I_{a \ge 0,Q \ge 0} \left( Q \right) & \approx \exp \left( {\tfrac{{a^{2} c_{1}^{2} }}{{4b^{2} - 4a^{2} c_{2} }}} \right) \, \tfrac{1}{{4\sqrt {b^{2} - a^{2} c_{2} } }} \, \left[ {1 - erf \, \left( {\tfrac{{ - a \, c_{1} + \sqrt 2 Q\left( {b^{2} - a^{2} c_{2} } \right) \, }}{{2\sqrt {b^{2} - a^{2} c_{2} } }}} \right)} \right] \, \\ & \; + \tfrac{1}{2b}erf\left( {\frac{b \, Q}{\sqrt 2 }} \right). \\ \end{aligned} $$

Likewise, we can derive the approximation for \( I_{a \ge 0,Q \le 0} \):

$$ I_{a \ge 0,Q \le 0} \left( Q \right) \approx \exp \left( {\tfrac{{a^{2} c_{1}^{2} }}{{4b^{2} - 4a^{2} c_{2} }}} \right) \, \tfrac{1}{{4\sqrt {b^{2} - a^{2} c_{2} } }} \, \left[ {1 - erf \, \left( {\tfrac{{ - a \, c_{1} - \sqrt 2 Q\left( {b^{2} - a^{2} c_{2} } \right) \, }}{{2\sqrt {b^{2} - a^{2} c_{2} } }}} \right)} \right]. $$

Combining the preceding results, we prove the result in (12).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsay, WJ., Huang, C.J., Fu, TT. et al. A simple closed-form approximation for the cumulative distribution function of the composite error of stochastic frontier models. J Prod Anal 39, 259–269 (2013). https://doi.org/10.1007/s11123-012-0283-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-012-0283-1

Keywords

JEL Classification

Navigation