Log in

Understanding chloroplast biogenesis using second-site suppressors of immutans and var2

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chloroplast biogenesis is an essential light-dependent process involving the differentiation of photosynthetically competent chloroplasts from precursors that include undifferentiated proplastids in leaf meristems, as well as etioplasts in dark-grown seedlings. The mechanisms that govern these developmental processes are poorly understood, but entail the coordinated expression of nuclear and plastid genes. This coordination is achieved, in part, by signals generated in response to the metabolic and developmental state of the plastid that regulate the transcription of nuclear genes for photosynthetic proteins (retrograde signaling). Variegation mutants are powerful tools to understand pathways of chloroplast biogenesis, and over the years our lab has focused on immutans (im) and variegated2 (var2), two nuclear gene-induced variegations of Arabidopsis. im and var2 are among the best-characterized chloroplast biogenesis mutants, and they define the genes for plastid terminal oxidase (PTOX) and the AtFtsH2 subunit of the thylakoid FtsH metalloprotease complex, respectively. To gain insight into the function of these proteins, forward and reverse genetic approaches have been used to identify second-site suppressors of im and var2 that replace or bypass the need for PTOX and AtFtsH2 during chloroplast development. In this review, we provide a brief update of im and var2 and the functions of PTOX and AtFtsH2. We then summarize information about second-site suppressors of im and var2 that have been identified to date, and describe how they have provided insight into mechanisms of photosynthesis and pathways of chloroplast development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam Z, Frottin F, Espagne C, Meinnel T, Giglione C (2011) Interplay between N-terminal methionine excision and FtsH protease is essential for normal chloroplast development and function in Arabidopsis. Plant Cell 23:3745–3760

    PubMed  CAS  Google Scholar 

  • Albrecht V, Ingenfeld A, Apel K (2006) Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality. Plant Mol Biol 60:507–518

    PubMed  CAS  Google Scholar 

  • Allahverdiyeva Y, Mamedov F, Mäenpää P, Vass I, Aro EM (2005) Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim Biophys Acta 1709:69–83

    PubMed  CAS  Google Scholar 

  • Aluru M, Bae H, Wu D, Rodermel S (2001) The Arabidopsis immutans mutation affects plastid differentiation and the morphogenesis of white and green sectors in variegated plants. Plant Physiol 127:67–77

    PubMed  CAS  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II: inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    PubMed  CAS  Google Scholar 

  • Barkan A (2011) Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol 155:1520–1532

    PubMed  CAS  Google Scholar 

  • Barr J, White WS, Chen L, Bae H, Rodermel S (2004) The GHOST terminal oxidase regulates developmental programming in tomato fruit. Plant Cell Environ 27:840–852

    CAS  Google Scholar 

  • Berthold DA, Stenmark P (2003) Membrane-bound diiron carboxylate proteins. Annu Rev Plant Biol 54:497–517

    PubMed  CAS  Google Scholar 

  • Blomquist LA, Ryberg M, Sundquist C (2008) Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. Photosynth Res 96:37–50

    Google Scholar 

  • Bock R, Timmis JN (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. BioEssays 30:556–566

    PubMed  CAS  Google Scholar 

  • Bogorad L (2008) Evolution of early eukaryotic cells: genomes, proteomes, and compartments. Photosynth Res 95:11–21

    PubMed  CAS  Google Scholar 

  • Budziszewski GJ et al (2001) Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning. Genetics 159:1765–1778

    PubMed  CAS  Google Scholar 

  • Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68

    PubMed  CAS  Google Scholar 

  • Cazzonelli CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:265–274

    Google Scholar 

  • Chen M, Jensen M, Rodermel S (1999) The yellow variegated mutant of Arabidopsis is plastid autonomous and delayed in chloroplast biogenesis. J Hered 90:207–214

    PubMed  CAS  Google Scholar 

  • Chen M, Choi Y, Voytas DF, Rodermel S (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22:303–313

    PubMed  Google Scholar 

  • Chen J, Burke JJ, Velten J, **n Z (2006) FtsH11 protease plays a critical role in Arabidopsis thermotolerance. Plant J 48:73–84

    PubMed  CAS  Google Scholar 

  • Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of nonphosphorylating bypasses. Biochim Biophys Acta 1757:730–741

    PubMed  CAS  Google Scholar 

  • Coll NS, Danon A, Meurer J, Cho WK, Apel K (2009) Characterization of soldat8, a suppressor of singlet oxygen induced cell death in Arabidopsis seedlings. Plant Cell Physiol 50:707–718

    PubMed  CAS  Google Scholar 

  • Constan D, Froehlich JE, Rangarajan S, Keegstra K (2004) A stromal Hsp100 protein is required for normal chloroplast development and function in Arabidopsis. Plant Physiol 136:3605–3615

    PubMed  CAS  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132:273–285

    PubMed  CAS  Google Scholar 

  • Delannoy E, Stanley WA, Bond CS, Small ID (2007) Pentatricopeptide repeat (PPR) proteins as sequence-specificity factors in posttranscriptional processes in organelles. Biochem Soc Trans 35:1643–1647

    PubMed  CAS  Google Scholar 

  • Dietz KJ, Schreiber U, Heber U (1985) The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes. Planta 166:219–226

    CAS  Google Scholar 

  • Flores-Pérez U, Jarvis P (2013) Molecular chaperone involvement in chloroplast protein import. Biochim Biophys Acta 1833:332–340

    PubMed  Google Scholar 

  • Foudree A, Putarjunan A, Kambakam S, Nolan T, Fussell J, Pogorelko G, Rodermel S (2012) The mechanism of variegation in immutans provides insight into chloroplast biogenesis. Front Plant Sci 3:Article 260. doi:10.3389/fpls.2012.00260

    Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    PubMed  CAS  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1661–2012

    Google Scholar 

  • Fu A, Park S, Rodermel S (2005) Sequences required for the activity of PTOX (IMMUTANS), a plastid terminal oxidase: in vitro and in planta mutagenesis of Fe-binding sites and a conserved sequence that corresponds to Exon 8. J Biol Chem 280:42489–42496

    PubMed  CAS  Google Scholar 

  • Fu A, Aluru M, Rodermel SR (2009) Conserved active site sequences in Arabidopsis plastid terminal oxidase (PTOX): in vitro and in planta mutagenesis studies. J Biol Chem 284:22625–22632

    PubMed  CAS  Google Scholar 

  • Fu A, Liu H, Yu F, Kambakam S, Luan S, Rodermel S (2012) Alternative oxidases (AOX1a and AOX2) can functionally substitute for plastid terminal oxidase in Arabidopsis chloroplasts. Plant Cell 24:1579–1595

    PubMed  CAS  Google Scholar 

  • Giglione C, Vallon O, Meinnel T (2003) Control of protein lifespan by N-terminal methionine excision. EMBO J 22:13–23

    PubMed  CAS  Google Scholar 

  • Gomes CM, LeGall J, Xavier AV, Teixeira M (2001) Could a diiron-containing four helix-bundle protein have been a primitive oxygen reductase? Chem Biochem 7:583–587

    Google Scholar 

  • Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36:541–549

    PubMed  CAS  Google Scholar 

  • Huang J, Taylor JP, Chen J, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein thylakoid formation 1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    PubMed  CAS  Google Scholar 

  • Hugueney P, Bouvier F, Badillo A, d’Harlingue A, Kuntz M, Camara B (1995) Identification of a plastid protein involved in vesicle fusion and/or membrane protein translocation. Proc Natl Acad Sci USA 92:5630–5634

    PubMed  CAS  Google Scholar 

  • Huner NPA, Oquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Google Scholar 

  • Ito K, Akiyama Y (2005) Cellular functions, mechanism of action, and regulation of FtsH protease. Annu Rev Microbiol 59:211–231

    PubMed  CAS  Google Scholar 

  • Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G, Hurry V, Hüner NPA (2012) Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Photosynth Res 113:191–206

    PubMed  CAS  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    PubMed  CAS  Google Scholar 

  • Josse EM, Simkin AJ, Gaffé J, Labouré AM, Kuntz M, Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436

    PubMed  CAS  Google Scholar 

  • Josse EM, Alcaraz JP, Laboure AM, Kuntz M (2003) In vitro characterization of a plastid terminal oxidase (PTOX). Eur J Biochem 270:3787–3794

    PubMed  CAS  Google Scholar 

  • Kanervo E, Singh M, Suorsa M, Paakkarinen V, Aro E, Battchikova N, Aro E-M (2008) Expression of protein complexes and individual proteins upon transition of etioplasts to chloroplasts in pea (Pisum sativum). Plant Cell Physiol 49:396–410

    PubMed  CAS  Google Scholar 

  • Kato Y, Miura E, Matsushima R, Sakamoto W (2007) White leaf sectors in yellow variegated2 are formed by viable cells with undifferentiated plastids. Plant Physiol 144:952–960

    PubMed  CAS  Google Scholar 

  • Kato Y, Miura E, Ido K, Ifuku K, Sakamoto W (2009) The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species. Plant Physiol 151:1790–1801

    PubMed  CAS  Google Scholar 

  • Kato Y, Kouso T, Sakamoto W (2012a) Variegated tobacco leaves generated by chloroplast FtsH suppression: implication of FtsH function in the maintenance of thylakoid membranes. Plant Cell Physiol 53:391–404

    PubMed  CAS  Google Scholar 

  • Kato Y, Sun X, Zhang L, Sakamoto W (2012b) Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis. Plant Physiol 159:1428–1439

    PubMed  CAS  Google Scholar 

  • Keren N, Liberton M, Pakrasi HB (2005) Photochemical competence of assembled photosystem II core complex in cyanobacterial plasma membrane. J Biol Chem 280:6548–6553

    PubMed  CAS  Google Scholar 

  • Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007a) Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719

    PubMed  CAS  Google Scholar 

  • Koussevitzky S, Stanne TM, Peto CA, Giap T, Sjögren LLE, Zhao Y, Clarke AK, Chory J (2007b) An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol 63:85–96

    PubMed  CAS  Google Scholar 

  • Kovacheva S, Bedard J, Patel R, Dudley P, Twell D, Rios G, Koncz C, Jarvis P (2005) In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J 41:412–428

    PubMed  CAS  Google Scholar 

  • Kovacheva S, Bedard J, Wardle A, Patel R, Jarvis P (2007) Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J 50:364–379

    PubMed  CAS  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    PubMed  CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    PubMed  CAS  Google Scholar 

  • Krupinska K, Melonek J, Krause K (2013) New insights into plastid nucleoid structure and functionality. Planta 237:653–664

    PubMed  CAS  Google Scholar 

  • Kuntz M (2004) Plastid terminal oxidase and its biological significance. Planta 218:896–899

    PubMed  CAS  Google Scholar 

  • Liu X, Rodermel S, Yu F (2010a) A var2 leaf variegation suppressor locus, SUPPRESSOR OF VARIEGATION3, encodes a putative chloroplast translation elongation factor that is important for chloroplast development in the cold. BMC Plant Biol 10:287

    PubMed  CAS  Google Scholar 

  • Liu X, Yu F, Rodermel S (2010b) Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation: a review. J Integr Plant Biol 52:750–761

    PubMed  CAS  Google Scholar 

  • Liu X, Yu F, Rodermel S (2010c) An Arabidopsis pentatricopeptide repeat protein, SVR7, is required for FtsH-mediated chloroplast biogenesis. Plant Phys 154:1588–1601

    CAS  Google Scholar 

  • Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233

    PubMed  CAS  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    PubMed  CAS  Google Scholar 

  • Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ (2012) Nucleoid-enriched proteomes in develo** plastids and chloroplasts from maize leaves; a new conceptual framework for nucleoid function. Plant Physiol 158:156–189

    PubMed  CAS  Google Scholar 

  • Margus T, Remm M, Tenson T (2007) Phylogenetic distribution of translational GTPases in bacteria. Genomics 8:15

    PubMed  Google Scholar 

  • Martínez-Zapater JM (1993) Genetic analysis of variegated mutants in Arabidopsis. J Hered 84:138–140

    Google Scholar 

  • Mayfield SP, Taylor WC (1984) Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur J Biochem 144:79–84

    PubMed  CAS  Google Scholar 

  • McDonald AE (2008) Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed “cyanide-resistant” terminal oxidase. Funct Plant Biol 35:535–552

    CAS  Google Scholar 

  • McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967

    PubMed  CAS  Google Scholar 

  • McElver J et al (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159:1751–1763

    PubMed  CAS  Google Scholar 

  • Meskauskiene R, Wursch M, Laloi C, Vidi PA, Coll NS, Kessler F et al (2009) A mutation in the Arabidopsis mTERF-related plastid protein SOLDAT10 activates retrograde signaling and suppresses 1O2-induced cell death. Plant J 60:399–410

    PubMed  CAS  Google Scholar 

  • Miura E, Kato Y, Matsushima R, Albrecht V, Laalami S, Sakamoto W (2007) The balance between protein synthesis and degradation in chloroplasts determines leaf variegation in Arabidopsis yellow variegated mutants. Plant Cell 19:1313–1328

    PubMed  CAS  Google Scholar 

  • Miura E, Kato Y, Sakamoto W (2010) Comparative transcriptome analysis of green/white variegated sectors in Arabidopsis yellow variegated2: responses to oxidative and other stresses in white sectors. J Exp Bot 61:2433–2445

    PubMed  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    PubMed  CAS  Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    PubMed  CAS  Google Scholar 

  • Noguchi K, Yoshida K (2008) Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8:87–99

    PubMed  CAS  Google Scholar 

  • Nolden M, Ehses S, Koppen M, Bernacchia A, Rugarli EI, Langer T (2005) The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123:277–289

    PubMed  CAS  Google Scholar 

  • Oelmüller R (1989) Photooxidative destruction of chloroplasts and its effect on nuclear gene expression and extraplastidic enzyme levels. Photochem Photobiol 49:229–239

    Google Scholar 

  • Okegawa Y, Long TA, Iwano M, Takayama S, Kobayashi Y, Covert SF, Shikanai T (2007) A balanced PGR5 level is required for chloroplast development and optimum operation of cyclic electron transport around photosystem I. Plant Cell Physiol 48:1462–1471

    PubMed  CAS  Google Scholar 

  • Okegawa Y, Kobayashi Y, Shikanai T (2010) Physiological links among alternative electron transport pathways that reduce and oxidize plastoquinone in Arabidopsis. Plant J 63:458–468

    CAS  Google Scholar 

  • Olinares PDB, Kim J, van Wijk KJ (2011) The Clp protease system: a central component of the chloroplast protease network. Biochim Biophys Acta 1807:999–1011

    PubMed  CAS  Google Scholar 

  • Ostersetzer O, Adam Z (1997) Light-stimulated degradation of an unassembled Rieske FeS protein by a thylakoid-bound protease: the possible role of the FtsH protease. Plant Cell 9:957–996

    PubMed  CAS  Google Scholar 

  • Park S, Rodermel SR (2004) Mutations in ClpC2/Hsp100 suppress the requirement for FtsH in thylakoid membrane biogenesis. Proc Natl Acad Sci USA 101:12765–12770

    PubMed  CAS  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    PubMed  CAS  Google Scholar 

  • Peng L, Shimizu H, Shikanai T (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J Biol Chem 283:34873–34879

    PubMed  CAS  Google Scholar 

  • Peng L, Yamamoto T, Shikanai T (2011) Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim Biophys Acta 1807:945–953

    PubMed  CAS  Google Scholar 

  • Peng L, Fukao Y, Fujiwara M, Shikanai T (2012) Multistep assembly of chloroplast NADH Dehydrogenase-like subcomplex A requires several nucleus-encoded proteins, including CRR41 and CRR42, in Arabidopsis. Plant Cell 24:202–214

    PubMed  CAS  Google Scholar 

  • Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18:186–194

    PubMed  CAS  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmüller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    PubMed  CAS  Google Scholar 

  • Phinney BS, Thelen JJ (2005) Proteomic characterization of a triton-insoluble fraction from chloroplasts defines a novel group of proteins associated with macromolecular structures. J Proteome Res 4:497–506

    PubMed  CAS  Google Scholar 

  • Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551

    PubMed  CAS  Google Scholar 

  • Pogson BJ, Woo NS, Förster B, Small ID (2008) Plastid signaling to the nucleus and beyond. Trends Plant Sci 13:602–609

    PubMed  CAS  Google Scholar 

  • Polidoros AN, Mylona PV, Arnholdt-Schmitt B (2009) AOX gene structure, transcript variation and expression in plants. Physiol Plant 137:342–354

    PubMed  CAS  Google Scholar 

  • Pyke KA, Marrison JL, Leech RM (1991) Temporal and spatial development of the cells of the expanding first leaf of Arabidopsis thaliana (L.) Heynh. J Exp Bot 42:1407–1416

    Google Scholar 

  • Qiao J, Ma C, Wimmelbacher M, Börnke F, Luo M (2011) Two novel proteins, MRL7 and its paralog MRL7-L, have essential but functionally distinct roles in chloroplast development and are involved in plastid gene expression regulation in Arabidopsis. Plant Cell Physiol 52(6):1017–1030

    PubMed  CAS  Google Scholar 

  • Rédei GP (1963) Somatic instability caused by a cysteine-sensitive gene in Arabidopsis. Science 139:767–769

    PubMed  Google Scholar 

  • Rédei GP (1967) Biochemical aspects of a genetically determined variegation in Arabidopsis. Genetics 56:431–443

    PubMed  Google Scholar 

  • Röbbelen G (1968) Genbedingte Rotlicht-Empfindlichkeit der Chloroplastendifferenzierung bei Arabidopsis. Planta 80:237–254

    Google Scholar 

  • Robertson EJ, Pyke KA, Leech RM (1995) arc6, an extreme chloroplast division mutant of Arabidopsis, also alters proplastid proliferation and morphology in shoot and root apices. J Cell Sci 108:2937–2944

    PubMed  CAS  Google Scholar 

  • Rochaix JD (2011) Regulation of photosynthetic electron transport. Biochim Biophys Acta 1807:878–886

    PubMed  CAS  Google Scholar 

  • Rodrigo MJ, Marcos JF, Zacarias L (2004) Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric Food Chem 52:6724–6731

    PubMed  CAS  Google Scholar 

  • Rodrigues RA, Silva-Filho MC, Cline K (2011) FtsH2 and FtsH5: two homologous subunits use different integration mechanisms leading to the same thylakoid multimeric complex. Plant J 65:600–609

    PubMed  CAS  Google Scholar 

  • Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP, Hüner NPA (2006) IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis. Plant Physiol 142:1–12

    Google Scholar 

  • Rosso D, Bode R, Li W, Krol M, Saccon D, Wang S, Schillaci LA, Rodermel SR, Maxwell DP, Hüner NP (2009) Photosynthetic redox imbalance governs leaf sectoring in the Arabidopsis thaliana variegation mutants immutans, spotty, var1, and var2. Plant Cell 21:3473–3492

    PubMed  CAS  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    PubMed  CAS  Google Scholar 

  • Ruppel NJ, Hangarter RP (2007) Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana. BMC Plant Biol 7:37

    PubMed  Google Scholar 

  • Saini G, Meskauskiene R, Pijacka W, Roszak P, Sjogren LL, Clarke AK, Straus M, Apel K (2011) ‘Happy on norflurazon’ (hon) mutations implicate perturbance of plastid homeostasis with activating stress acclimatization and changing nuclear gene expression in norflurazon-treated seedlings. Plant J 65:690–702

    PubMed  CAS  Google Scholar 

  • Saisho D, Nambara E, Naito S, Tsutsumi N, Hirai A, Nakazono M (1997) Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Mol Biol 35:585–596

    PubMed  CAS  Google Scholar 

  • Saisho D, Nakazono M, Lee KH, Tsutsumi N, Akita S, Hirai A (2001) The gene for alternative oxidase-2 (AOX2) from Arabidopsis thaliana consists of five exons unlike other AOX genes and is transcribed at an early stage during germination. Genes Genet Syst 76:89–97

    CAS  Google Scholar 

  • Sakamoto W (2003) Leaf-variegated mutations and their responsible genes in Arabidopsis thaliana. Genes Genet Syst 78:1–9

    PubMed  CAS  Google Scholar 

  • Sakamoto W, Tamura T, Hanba-Tomita Y, Murata M, Sodmergen (2002) The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variegation in the mutant alleles. Genes Cells 7:769–780

    PubMed  CAS  Google Scholar 

  • Sakamoto W, Miura E, Kaji Y, Okuno T, Nishizono M, Ogura T (2004) Allelic characterization of the leaf-variegated mutation var2 identifies the conserved amino acid residues of FtsH that are important for ATP hydrolysis and proteolysis. Plant Mol Biol 56:705–716

    PubMed  CAS  Google Scholar 

  • Sakamoto W, Uno Y, Zhang Q, Miura E, Kato Y, Sodmergen (2009) Arrested differentiation of proplastids into chloroplasts in variegated leaves characterized by plastid ultrastructure and nucleoid morphology. Plant Cell Physiol 50:2069–2083

    PubMed  CAS  Google Scholar 

  • Sandmann G (2009) Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys 483:169–174

    PubMed  CAS  Google Scholar 

  • Santabarbara S, Casazza AP, Ali K, Economou CK, Wannathong T, Zito F, Redding KE, Rappaport F, Purton S (2013) The requirement for carotenoids in the assembly and function of the photosynthetic complexes in Chlamydomonas reinhardtii. Plant Physiol 161:535–546

    PubMed  CAS  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26

    PubMed  CAS  Google Scholar 

  • Seo S, Okamoto M, Iwai T, Iwano M, Fukui K, Isogai A, Nakajima N, Ohashi Y (2000) Reduced levels of chloroplast FtsH protein in tobacco mosaic virus-infected tobacco leaves accelerate the hypersensitive reaction. Plant Cell 12:917–932

    PubMed  CAS  Google Scholar 

  • Shahbazi M, Gilbert M, Laboure A, Kuntz M (2007) The dual role of the plastid terminal oxidase (PTOX) in tomato. Plant Physiol 145:691–702

    PubMed  CAS  Google Scholar 

  • Shen G, Adam Z, Zhang H (2007) The E3 ligase AtCHIP ubiquitylates FtsH1, a component of the chloroplast FtsH protease, and affects protein degradation in chloroplasts. Plant J 52:309–321

    PubMed  CAS  Google Scholar 

  • Shiba T, Kido Y, Sakamoto K et al (2013) Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc Natl Acad Sci USA 110:4580–4585

    PubMed  CAS  Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    PubMed  CAS  Google Scholar 

  • Sinvany-Villalobo G, Davydov O, Ben-Ari G, Zaltsman A, Raskind A, Adam Z (2004) Expression in multigene families. Analysis of chloroplast and mitochondrial proteases. Plant Physiol 135:1336–1345

    PubMed  CAS  Google Scholar 

  • Sjögren LL, MacDonald TM, Sutinen S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol 136:4114–4126

    PubMed  Google Scholar 

  • Sjögren LL, Tanabe N, Khan NZ, Rodermel SR, Aronsson H, Clarke AK (2013) New dimensions to the functional importance of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis. Plant Physiol (in press)

  • Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997) Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? Bioscience 47:785–793

    Google Scholar 

  • Sullivan JA, Gray JC (1999) Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant. Plant Cell 11:901–910

    PubMed  CAS  Google Scholar 

  • Takechi K, Sodmergen, Murata M, Motoyoshi F, Sakamoto W (2000) The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant Cell Physiol 41:1334–1346

    PubMed  CAS  Google Scholar 

  • Tepperman JM, Zhu T, Chang H-S, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA 98:9437–9442

    PubMed  CAS  Google Scholar 

  • Terry MJ, Smith AG (2013) A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Front Plant Sci 4:Article 14. doi:10.3389/fpls.2013.00014

    Google Scholar 

  • Trouillard M, Shahbazi M, Moyet L, Rappaport F, Joliot P, Kuntz M, Finazzi G (2012) Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. Biochim Biophys Acta 1817:2140–2148

    PubMed  CAS  Google Scholar 

  • Wang Q, Sullivan RW, Kight A, Henry RL, Huang J, Jones AM, Korth KL (2004) Deletion of the chloroplast-localized thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol 136:3594–3604

    PubMed  CAS  Google Scholar 

  • Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM et al (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    PubMed  CAS  Google Scholar 

  • Wetzel CM, Jiang CZ, Meehan LJ, Voytas DF, Rodermel SR (1994) Nuclear–organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J 6:161–175

    PubMed  CAS  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    PubMed  Google Scholar 

  • Woodson JD, Perez-Ruiz JM, Chory J (2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21:897–903

    PubMed  CAS  Google Scholar 

  • Wu D, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55

    PubMed  CAS  Google Scholar 

  • Yoshida K, Terashima I, Noguchi K (2007) Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Physiol 48:606–614

    PubMed  CAS  Google Scholar 

  • Yu F, Park S, Rodermel S (2004) The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J 37:864–876

    PubMed  CAS  Google Scholar 

  • Yu F, Park S, Rodermel SR (2005) Functional redundancy of AtFtsH metalloproteases in thylakoid membrane complexes. Plant Physiol 138:1957–1966

    PubMed  CAS  Google Scholar 

  • Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ 30:350–365

    PubMed  CAS  Google Scholar 

  • Yu F, Liu X, Alsheikh M, Park S, Rodermel S (2008) Mutations in SUPPRESSOR OF VARIEGATION1, a factor required for normal chloroplast translation, suppress var2-mediated leaf variegation in Arabidopsis. Plant Cell 20:1786–1804

    PubMed  CAS  Google Scholar 

  • Yu F, Park S, Liu X, Foudree A, Fu A, Powikrowska M, Khrouchtchova A, Jensen PE, Krigere JN, Gray GR, Rodermel SR (2011) SUPPRESSOR OF VARIEGATION4, a new var2 suppressor locus, encodes a pioneer protein that is required for chloroplast biogenesis. Mol Plant 4:229–240

    PubMed  CAS  Google Scholar 

  • Zaltsman A, Feder A, Adam Z (2005a) Developmental and light effects on the accumulation of FtsH protease in Arabidopsis chloroplasts—implications for thylakoid formation and photosystem II maintenance. Plant J 42:609–617

    PubMed  CAS  Google Scholar 

  • Zaltsman A, Ori N, Adam Z (2005b) Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in Arabidopsis. Plant Cell 17:2782–2790

    PubMed  CAS  Google Scholar 

  • Zelisko A, García-Lorenzo M, Jackowski G, Jansson S, Funk C (2005) AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci USA 102:13699–13704

    PubMed  CAS  Google Scholar 

  • Zhang H, Primak A, Cape J, Bowman MK, Kramer DM, Cramer WA (2004) Characterization of the high-spin heme x in the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry 43:16329–16336

    PubMed  CAS  Google Scholar 

  • Zhang L, Wei Q, Wu W, Cheng Y, Hu G, Hu F, Sun Y, Zhu Y, Sakamoto W, Huang J (2009) Activation of the heterotrimeric G protein α-subunit GPA1 suppresses the ftsh-mediated inhibition of chloroplast development in Arabidopsis. Plant J 58:1041–1053

    PubMed  CAS  Google Scholar 

  • Zhang D, Kato Y, Zhang L, Fujimoto M, Tsutsumi N, Sodmergen et al (2010) The FtsH protease heterocomplex in Arabidopsis: dispensability of type-B protease activity for proper chloroplast development. Plant Cell 22:3710–3725

    PubMed  CAS  Google Scholar 

  • Zoschke R, Kroeger T, Belcher S, Schöttler MA, Barkan A, Schmitz-Linneweber C (2012a) The pentatricopeptide repeat-SMR protein ATP4 promotes translation of the chloroplast atpB/E mRNA. Plant J 72:547–558

    PubMed  CAS  Google Scholar 

  • Zoschke R, Qu Y, Zubo YO, Börner T, Schmitz-Linneweber C (2012b) Mutation of the pentatricopeptide repeat-SMR protein SVR7 impairs accumulation and translation of chloroplast ATP synthase subunits in Arabidopsis thaliana. J Plant Res. doi:10.1007/s10265-012-0527-1

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funding to S.R. from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DEFG02-94ER20147). Research in Fei Yu’s lab is supported by Grants from the National Natural Science Foundation of China to Fei Yu (31071073, 31170219) and **ayan Liu (31100864).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Rodermel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putarjunan, A., Liu, X., Nolan, T. et al. Understanding chloroplast biogenesis using second-site suppressors of immutans and var2 . Photosynth Res 116, 437–453 (2013). https://doi.org/10.1007/s11120-013-9855-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9855-9

Keywords

Navigation