Log in

Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Light-driven photosynthetic electron transport is coupled to the movement of protons from the chloroplast stroma to the thylakoid lumen. The resulting proton motive force that is generated is used to drive the conformational rotation of the transmembrane thylakoid ATPase enzyme which converts ADP (adenosine diphosphate) and Pi (inorganic phosphate) into ATP (adenosine triphosphate), the energy currency of the plant cell required for carbon fixation and other metabolic processes. According to Mitchell’s chemiosmotic hypothesis, the proton motive force can be parsed into the transmembrane proton gradient (ΔpH) and the electric field gradient (Δψ), which are thermodynamically equivalent. In chloroplasts, the proton motive force has been suggested to be split almost equally between Δψ and ΔpH (Kramer et al., Photosynth Res 60:151–163, 1999). One of the central pieces of evidence for this theory is the existence of a steady-state electrochromic shift (ECS) absorption signal detected ~515 nm in plant leaves during illumination. The interpretation of this signal is complicated, however, by a heavily overlap** absorption change ~535 nm associated with the formation of photoprotective energy dissipation (qE) during illumination. In this study, we present new evidence that dissects the overlap** contributions of the ECS and qE-related absorption changes in wild-type Arabidopsis leaves using specific inhibitors of the ΔpH (nigericin) and Δψ (valinomycin) and separately using leaves of the Arabidopsis lut2npq1 mutant that lacks qE. In both cases, our data show that no steady-state ECS signal persists in the light longer than ~60 s. The consequences of our observations for the suggesting parsing of steady-state thylakoid proton motive force between (ΔpH) and the electric field gradient (Δψ) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avenson TJ, Cruz JA, Kramer DM (2004) Modulation of energy-dependent quenching of excitons in antennae of higher plants. Proc Natl Acad Sci USA 101:5530–5535

    Article  CAS  PubMed  Google Scholar 

  • Barber J (1976) Ionic regulation in intact chloroplasts and its effect on primary photosynthetic processes. In: Barber J (ed) The intact chloroplast, vol 1. Elsevier North-Holland Biomedical Press, Amsterdam, pp 89–134

    Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Annu Rev Plant Physiol 33:261–295

    Article  CAS  Google Scholar 

  • Barber J, Mills J, Nicolson J (1974) Studies with cation specific ionophores show that within the intact chloroplast Mg2+ acts as the main exchange cation for H+ pum**. FEBS Lett 49:106–110

    Article  CAS  PubMed  Google Scholar 

  • Bendall DS, Davenport HE, Hill R (1971) Cytochrome components in chloroplasts of the higher plants. Methods Enzymol 23A:327–344

    Article  Google Scholar 

  • Bennoun P (1994) Chlororespiration revisited: mitochondrial–plastid interactions in Chlamydomonas. Biochim Biophys Acta 1186:59–66

    Article  CAS  Google Scholar 

  • Berry S, Rumberg B (1996) H+/ATP coupling ratio at the unmodulated CF0CF1-ATP synthase determined by proton flux measurements. Biochim Biophys Acta 1276:51–56

    Article  Google Scholar 

  • Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol 91:542–551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bulychev AA (1984) Different kinetics of membrane potential formation in dark adapted and pre-illuminated chloroplasts. Biochim Biophys Acta 766:647–652

    Google Scholar 

  • Bulychev AA, Andrianov VK, Kurella GA, Litvin FF (1972) Micro-electrode measurements of the transmembrane potential of chloroplasts and its photoinduced changes. Nature 236:175–177

    Article  CAS  Google Scholar 

  • Checchetto V, Segalla A, Allorent G, La Rocca N, Leanza L, Giacometti GM, Uozumi N, Finazzi G, Bergantino E, Szabo I (2012) Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proc Natl Acad Sci USA 109:11043–11048

    Article  CAS  PubMed  Google Scholar 

  • Chow WS, Wagner G, Hope AB (1976) Light-dependent redistribution of ions in isolated spinach chloroplasts. Aust J Plant Physiol 3:853–861

    Article  CAS  Google Scholar 

  • Crouchman S, Ruban A, Horton P (2006) PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. FEBS Lett 580:2053–2058

    Article  CAS  PubMed  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. Control of pmf parsing into Δψ and ΔpH by ionic strength. Biochemistry 40:1226–1237

    Article  CAS  PubMed  Google Scholar 

  • Deamer DW, Crofts AR, Packer L (1966) Mechanisms of light-induced structural changes in chloroplasts. I. Light-scattering increments and ultrastructural changes mediated by proton transport. Biochim Biophys Acta 131:81–96

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Dilley RA, Vernon LP (1965) Ion and water transport processes related to the light dependent shrinkage of spinach chloroplasts. Arch Biochem Biophys 111:365–375

    Article  CAS  PubMed  Google Scholar 

  • Duysens LNM (1954) Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science 120:353–354

    Article  CAS  PubMed  Google Scholar 

  • Giersch C, Heber U, Kobayashi Y, Inoue Y, Shibata K, Heldt HW (1980) Energy charge, phosphorylation potential and proton motive force in chloroplasts. Biochim Biophys Acta 590:59–73

    Article  CAS  PubMed  Google Scholar 

  • Heber U (1969) Conformational changes of chloroplasts induced by illumination of leaves in vivo. Biochim Biophys Acta 180:302–319

    Article  CAS  PubMed  Google Scholar 

  • Hind G, Nakatani HY, Izawa S (1974) Light-dependent redistribution of ions in suspensions of chloroplast thylakoid membranes. Proc Natl Acad Sci USA 71:1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of light harvesting function in chloroplast membranes by aggregation of the LHCII chlorophyll–protein complex. FEBS Lett 292:1–2

    Article  CAS  PubMed  Google Scholar 

  • Ilioaia C, Johnson MP, Duffy CDP, Pascal AA, van Grondelle R, Robert B, Ruban AV (2011) Origin of absorption changes associated with photoprotective energy dissipation in the absence of zeaxanthin. J Biol Chem 286:91–98

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2010) Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J 61:283–289

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Perez-Bueno ML, Zia A, Horton P, Ruban AV (2009) The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiol 149:1061–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Junesch U, Gräber P (1985) The rate of ATP synthesis as a function of ΔpH in normal and dithiothreitol-modified chloroplasts. Biochim Biophys Acta 809:429–434

    Google Scholar 

  • Junge W (1977) Membrane potentials in photosynthesis. Ann Rev Plant Physiol 28:503–536

    Article  CAS  Google Scholar 

  • Junge W, Witt HT (1968) On the ion transport system in photosynthesis: investigations on a molecular level. Z Naturforsch B 23:244–254

    CAS  PubMed  Google Scholar 

  • Kaim G, Dimroth P (1998) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J 18:4118–4127

    Article  Google Scholar 

  • Kramer DM, Crofts AR (1989) Activation of the chloroplast ATPase measured by the electrochromic change in leaves of intact plants. Biochim Biophys Acta 976:28–41

    Article  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA (1998) A diffused-optics flash kinetic spectrophotometer (DOFS) for measurements of absorbance changes in intact plants in the steady-state. Photosynth Res 56:103–112

    Article  CAS  Google Scholar 

  • Kramer DM, Wise RR, Frederick JR, Alm DM, Hesketh JD, Ort DR, Crofts AR (1990) Regulation of coupling factor in field-grown sunflower: a Redox model relating coupling factor activity to the activities of other thioredoxin-dependent chloroplast enzymes. Photosynth Res 26:213–222

    Article  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32

    Article  CAS  PubMed  Google Scholar 

  • Krause GH (1973) The high-energy state of the thylakoid system as indicated by chlorophyll fluorescence and shrinkage. Biochim Biphys Acta 292:715–728

    Article  CAS  Google Scholar 

  • Marmagne A, Vinauger-Douard M, Monachello D, de Longevialle AF, Charon C, Allot M, Rappaport F, Wollman FA, Barbier-Brygoo H, Ephritikhine G (2007) Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. J Exp Bot 58:3385–3393

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    Article  CAS  PubMed  Google Scholar 

  • Morita S, Itoh S, Nishimura M (1982) Correlation between the activity of membrane bound ATPase and the decay rate of flash-induced 515 nm absorbance change inc chloroplasts in intact leaves, assayed by means of rapid isolation of chloroplasts. Biochim Biophys Acta 679:125–130

    Article  CAS  Google Scholar 

  • Murakami S, Packer L (1970a) Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo. Plant Physiol 45:289–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami S, Packer L (1970b) Protonation and chloroplast membrane structure. J Cell Biol 47:332–351

    Article  CAS  PubMed  Google Scholar 

  • Neumann J, Jagendorf AT (1964) Light-induced pH changes related to phosphorylation by chloroplasts. Arch Biochem Biophys 107:109–119

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niyogi KK, Shih C, Chow WS, Pogson BJ, Dellapenna D, Björkman O (2001) Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67:139–145

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Ruban AV, Horton P (1993) Modulation of ∆pH-dependent nonphotochemical quenching of chlorophyll fluorescence in spinach chloroplasts. Bicohim Biophys Acta 1183:339–344

    Article  CAS  Google Scholar 

  • Ort DR, Dilley RA (1976) Photophosphorylation as a function of illumination time. I. Effects of permeant cations and permeant anions. Biochim Biophys Acta 449:95–107

    Article  CAS  PubMed  Google Scholar 

  • Pick U, Rottenberg H, Avron M (1974) The dependence of photophosphorylation in chloroplasts on ΔpH and external pH. FEBS Lett 48:32–36

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Schoneckt G (1996) Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J Mem Biol 152:223–233

    Article  CAS  Google Scholar 

  • Reed PW (1979) Ionophores. Methods Enzymol 55:435–454

    Article  CAS  PubMed  Google Scholar 

  • Remiš D, Bulychev AA, Kurella GA (1986) The electrical and chemical components of the protonmotive force in chloroplasts as measured with capillary and pH-sensitive microelectrodes. Biochim Biophys Acta 852:68–73

    Article  Google Scholar 

  • Rottenberg H, Grunwald T, Avron M (1972) Determination of ΔpH in chloroplasts. Eur J Biochem 25:71–74

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Horton P, Young AJ (1993a) Aggregation of higher plant xanthophylls: differences in absorption spectra and in the dependency on solvent polarity. J Photochem Photobiol 21:229–234

    Article  CAS  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1993b) Induction of non-photochemical energy dissipation and absorbance changes in leaves. Plant Physiol 102:741–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Pascal AA, Robert B, Horton P (2002) Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting. J Biol Chem 277:7785–7789

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the Photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Schönfeld M, Neumann J (1977) Proton conductance of the thylakoid membrane: modulation by light. FEBS Lett 73:51–54

    Article  PubMed  Google Scholar 

  • Schönknecht G, Hedrich R, Junge W, Raschke K (1988) A voltage dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 336:589–592

    Article  Google Scholar 

  • Schröppel-Meier G, Kaiser WM (1988) Ion homeostasis in chloroplasts under salinity and mineral deficiency: I. Solute concentrations in leaves and chloroplasts from spinach plants under NaCl or NaNO3 salinity. Plant Physiol 87:822–827

    Article  PubMed Central  PubMed  Google Scholar 

  • Schuldiner S, Rottenberg H, Avron M (1972) Determination of ΔpH in chloroplasts. 2. Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Eur J Biochem 25:64–70

    Article  CAS  PubMed  Google Scholar 

  • Seelert H, Dencher NA, Muller DJ (2003) Fourteen protomers compose the oligomer III of the proton-rotor in spinach chloroplast ATP synthase. J Mol Biol 333:337–344

    Article  CAS  PubMed  Google Scholar 

  • Shavit N, Dilley RA, San Pietro A (1968) Ion translocation in isolated chloroplasts. Uncoupling of photophosphorylation and translocation of K+ and H+ ions induced by Nigericin. Biochemistry 7:2356–2363

    Article  CAS  PubMed  Google Scholar 

  • Slovacek RE, Hind G (1981) Correlation between photosynthesis and the transthylakoid proton gradient. Biochim Biophys Acta 635:393–404

    Article  CAS  PubMed  Google Scholar 

  • Steigmiller S, Turina P, Gräber P (2008) The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. Proc Natl Acd Sci USA 105:3745–3750

    Article  CAS  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim Biophys Acta 1767:1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Thorne SW, Horvath G, Kahn A, Boardman NK (1975) Light-dependent absorption and selective scattering changes at 518 nm in chloroplast thylakoid membranes. Proc Natl Acad Sci USA 72:3858–3862

    Google Scholar 

  • Tikhonov AN (2012) Energetic and regulatory role of proton potential in chloroplasts. Biochemistry (Moscow) 77:956–974

    Article  CAS  Google Scholar 

  • Tikhonov AN, Khomutov GB, Ruuge EK, Blumenfeld LA (1981) Electron transport in chloroplasts effects of photosynthetic control monitored by the intrathylakoid pH. Biochim Biophys Acta 637:321–333

    Article  CAS  Google Scholar 

  • Tikhonov AN, Agafonov RV, Grigor’ev IA, Kirilyuk IA, Ptushenko VV, Trubitsin BV (2007) Spin-probes designed for measuring the intrathylakoid pH in chloroplasts. Biochim Biophys Acta 1777:285–294

    Article  Google Scholar 

  • van Kooten O, Snel JFH, Vredenberg WJ (1986) Photosynthetic free energy transduction related to electrical potential changes across the thylakoid membrane. Photosynth Res 9:211–227

    Article  Google Scholar 

  • von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672

    Article  Google Scholar 

  • Vredenberg WJ, Bulychev AA (1976) Changes in the electrical potential across the thylakoid membranes of illuminated intact chloroplasts in the presence of membrane-modifying agents. Plant Sci Lett 7:101–107

    Article  CAS  Google Scholar 

  • Werdan K, Heldt HW, Milovancev M (1975) The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta 396:276–292

    Article  CAS  PubMed  Google Scholar 

  • Witt HT (1971) Coupling of quanta, electrons, fields, ions and phosphorylation in the functional membrane of photosynthesis. Quart Rev Biophys 4:365–477

    Article  CAS  Google Scholar 

  • Yamamoto HY, Nakayama TOM, Chichester CO (1962) Studies on the light and dark interconversions of leaf xanthophylls. Arch Biohem Biophys 97:168–173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Royal Society, the UK Biotechnology and Biological Sciences Research Council (BBSRC), and the Engineering and Physical Sciences Research council (EPSRC) for funding and Professor Peter Horton (University of Sheffield, UK) for very valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.P., Ruban, A.V. Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes. Photosynth Res 119, 233–242 (2014). https://doi.org/10.1007/s11120-013-9817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9817-2

Keywords

Navigation