Log in

Opinion: The red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Guard cells regulate CO2 uptake and water loss of a leaf by controlling stomatal movement in response to environmental factors such as CO2, humidity, and light. The mechanisms by which stomata respond to red light are actively debated in the literature, and even after decades of research it is still controversial whether stomatal movement is related to photosynthesis or not. This review summarizes the current knowledge of the red-light response of stomata. A comparison of published evidence suggests that stomatal movement is controlled by the redox state of photosynthetic electron transport chain components, in particular the redox state of plastoquinone. Potential consequences for the modeling of stomatal conductance are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A net :

Net CO2 assimilation rate

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

ETR:

Photosynthetic electron transport rate

FR:

Far-red

g s :

Stomatal conductance

PQ:

Plastoquinone

PS:

Photosystem

References

  • Allen JF (2003) State transitions—a question of balance. Science 299(5612):1530–1532. doi:10.1126/science.1082833

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Dean Price G, Soon Chow W, Hope AB, Badger MR (1997) Reduced levels of cytochrome bf complex in transgenic tobacco leads to marked photochemical reduction of the plastoquinone pool, without significant change in acclimation to irradiance. Photosynth Res 53(2):215–227. doi:10.1023/a:1005856615915

    Article  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9(1):345–375. doi:10.1146/annurev.cb.09.110193.002021

    Article  CAS  PubMed  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Briggins J (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff Publishers, Dordrecht, pp 221–224

    Chapter  Google Scholar 

  • Baroli I, Price GD, Badger MR, von Caemmerer S (2008) The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol 146(2):737–747. doi:10.1104/pp.107.110924

    Google Scholar 

  • Boccalandro HE, Giordano CV, Ploschuk EL, Piccoli PN, Bottini R, Casal JJ (2012) Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight. Plant Physiol 158(3):1475–1484. doi:10.1104/pp.111.187237

    Google Scholar 

  • Bräutigam K, Dietzel L, Kleine T, Ströher E, Wormuth D, Dietz K-J, Radke D, Wirtz M, Hell R, Dörmann P, Nunes-Nesi A, Schauer N, Fernie AR, Oliver SN, Geigenberger P, Leister D, Pfannschmidt T (2009) Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis. Plant Cell 21(9):2715–2732. doi:10.1105/tpc.108.062018

    Article  PubMed Central  PubMed  Google Scholar 

  • Brewer PE, Arntzen CJ, Slife FW (1979) Effects of atrazine, cyanazine, and procyazine on the photochemical reactions of isolated chloroplasts. Weed Sci 27(3):300–308

    CAS  Google Scholar 

  • Brodribb T (1996) Dynamics of changing intercellular CO2 concentration (ci) during drought and determination of minimum functional ci. Plant Physiol 111(1):179–185. doi:10.1104/pp.111.1.179

    Google Scholar 

  • Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26(10):1767–1785. doi:10.1046/j.1365-3040.2003.01094.x

    Google Scholar 

  • Chen C, **ao Y-G, Li X, Ni M (2012) Light-regulated stomatal aperture in Arabidopsis. Mol Plant 5(3):566–572. doi:10.1093/mp/sss039

    Article  PubMed  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45. doi:10.1146/annurev.arplant.58.032806.103951

    Google Scholar 

  • Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33(9):1419–1438. doi:10.1111/j.1365-3040.2010.02181.x

    PubMed  Google Scholar 

  • Dietz K-J, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155(4):1477–1485. doi:10.1104/pp.110.170043

    Google Scholar 

  • Dwyer SA, Chow WS, Yamori W, Evans JR, Kaines S, Badger MR, von Caemmerer S (2012) Antisense reductions in the PsbO protein of photosystem II leads to decreased quantum yield but similar maximal photosynthetic rates. J Exp Bot 63(13):4781–4795

    Article  CAS  PubMed  Google Scholar 

  • Ensminger I, Busch F, Hüner NPA (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126(1):28–44

    Article  CAS  Google Scholar 

  • Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci U S A 92(22):10237–10241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farquhar G, Wong S (1984) An empirical model of stomatal conductance. Funct Plant Biol 11(3):191–210. doi:10.1071/PP9840191

    CAS  Google Scholar 

  • Haake V, Zrenner R, Sonnewald U, Stitt M (1998) A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J 14(2):147–157. doi:10.1046/j.1365-313X.1998.00089.x

    Article  CAS  PubMed  Google Scholar 

  • Hajirezaei M-R, Peisker M, Tschiersch H, Palatnik JF, Valle EM, Carrillo N, Sonnewald U (2002) Small changes in the activity of chloroplastic NADP+-dependent ferredoxin oxidoreductase lead to impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Plant J 29(3):281–293. doi:10.1046/j.0960-7412.2001.01209.x

    Article  CAS  PubMed  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424(6951):901–908

    Article  CAS  PubMed  Google Scholar 

  • Holmes MG, Klein WH (1985) Evidence for phytochrome involvement in light-mediated stomatal movement in Phaseolus vulgaris L. Planta 166(3):348–353. doi:10.1007/bf00401172

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC, Allaway WG, Evans LT (1973) Action spectra for guard cell Rb+ uptake and stomatal opening in Vivia faba. Plant Physiol 51(1):82–88. doi:10.1104/pp.51.1.82

    Google Scholar 

  • Hu H, Boisson-Dernier A, Israelsson-Nordstroem M, Boehmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12(1):87–93. doi:10.1038/ncb2009

    Google Scholar 

  • Hudson GS, Evans JR, von Caemmerer S, Arvidsson YBC, Andrews TJ (1992) Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiol 98(1):294–302. doi:10.1104/pp.98.1.294

    Google Scholar 

  • Hüner NPA, Öquist G, Melis A (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW (eds) Advances in photosynthesis and respiration: light harvesting antennas in photosynthesis, vol 13. Kluwer Academic Publishers, Dordrecht, pp 401–421

    Chapter  Google Scholar 

  • Hüner NPA, Bode R, Dahal K, Busch FA, Possmayer M, Szyszka B, Rosso D, Ensminger I, Krol M, Ivanov AG, Maxwell DP (2013) Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity. Botany 91:127–136. doi:10.1139/cjb-2012-0174

    Google Scholar 

  • Jarvis AJ, Davies WJ (1998) The coupled response of stomatal conductance to photosynthesis and transpiration. J Exp Bot 49:399–406. doi:10.1093/jexbot/49.suppl_1.399

    Google Scholar 

  • Joliot P, Joliot A, Kok B (1968) Analysis of the interactions between the two photosystems in isolated chloroplasts. Biochim Biophys Acta 153(3):635–652. doi:10.1016/0005-2728(68)90191-6

    Article  CAS  PubMed  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284(5414):654–657. doi:10.1126/science.284.5414.654

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79(2):209–218

    Article  CAS  PubMed  Google Scholar 

  • Kuiper PJC (1964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris. Plant Physiol 39(6):952–955. doi:10.1104/pp.39.6.952

    Google Scholar 

  • Lauerer M, Saftic D, Quick WP, Labate C, Fichtner K, Schulze ED, Rodermel SR, Bogorad L, Stitt M (1993) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. VI. Effect on photosynthesis in plants grown at different irradiance. Planta 190(3):332–345. doi:10.1007/bf00196962

    Article  CAS  Google Scholar 

  • Lawson T (2009) Guard cell photosynthesis and stomatal function. New Phytol 181(1):13–34. doi:10.1111/j.1469-8137.2008.02685.x

    Article  CAS  PubMed  Google Scholar 

  • Lawson T, Lefebvre S, Baker NR, Morison JIL, Raines CA (2008) Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J Exp Bot 59(13):3609–3619. doi:10.1093/jxb/ern211

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Bowling D (1995) Influence of the mesophyll on stomatal opening. Aust J Plant Physiol 22(3):357–363. doi:10.1071/PP9950357

    Article  CAS  Google Scholar 

  • Leuning R (1990) Modelling stomatal behaviour and photosynthesis of Eucalyptus grandis. Funct Plant Biol 17(2):159–175. doi:10.1071/PP9900159

    Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18(4):339–355. doi:10.1111/j.1365-3040.1995.tb00370.x

    Article  CAS  Google Scholar 

  • Liebig M (1942) Untersuchungen über die Abhängigkeit der Spaltweite der Stomata von Intensität und Qualität der Strahlung. Planta 33(2):206–257. doi:10.1007/bf01916519

    Article  Google Scholar 

  • Lombardozzi D, Levis S, Bonan G, Sparks JP (2012) Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance. Biogeosciences 9(8):3113–3130. doi:10.5194/bg-9-3113-2012

    Article  CAS  Google Scholar 

  • Lurie S (1978) The effect of wavelength of light on stomatal opening. Planta 140(3):245–249. doi:10.1007/bf00390255

    Article  CAS  Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, De Angelis P, Freeman M, Wingate L (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol 17(6):2134–2144. doi:10.1111/j.1365-2486.2010.02375.x

    Article  Google Scholar 

  • Messinger SM, Buckley TN, Mott KA (2006) Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol 140(2):771–778. doi:10.1104/pp.105.073676

    Google Scholar 

  • Monteith JL (1995) A reinterpretation of stomatal responses to humidity. Plant Cell Environ 18(4):357–364. doi:10.1111/j.1365-3040.1995.tb00371.x

    Article  Google Scholar 

  • Morison JIL (1987) Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 229–251

    Google Scholar 

  • Morison JIL, Jarvis PG (1983) Direct and indirect effects of light on stomata. II. In Commelina communis L. Plant Cell Environ 6(2):103–109. doi:10.1111/j.1365-3040.1983.tb01882.x

  • Mott KA (2009) Opinion: stomatal responses to light and CO2 depend on the mesophyll. Plant Cell Environ 32(11):1479–1486. doi:10.1111/j.1365-3040.2009.02022.x

    Article  CAS  PubMed  Google Scholar 

  • Mott KA, Parkhurst DF (1991) Stomatal responses to humidity in air and helox. Plant Cell Environ 14(5):509–515. doi:10.1111/j.1365-3040.1991.tb01521.x

    Article  Google Scholar 

  • Muschak M, Willmitzer L, Fisahn J (1999) Gas-exchange analysis of chloroplastic fructose-1,6-bisphosphatase antisense potatoes at different air humidities and at elevated CO2. Planta 209(1):104–111. doi:10.1007/s004250050611

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Ishikawa H, Shimada K, Shibata K (1978) Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. Planta 142(1):61–65. doi:10.1007/bf00385121

    Article  CAS  Google Scholar 

  • Olsen RL, Pratt RB, Gump P, Kemper A, Tallman G (2002) Red light activates a chloroplast-dependent ion uptake mechanism for stomatal opening under reduced CO2 concentrations in Vicia spp. New Phytol 153(3):497–508. doi:10.1046/j.0028-646X.2001.00337.x

    Article  CAS  Google Scholar 

  • Pemadasa MA (1982) Abaxial and adaxial stomatal responses to light of different wavelengths and to phenylacetic acid on isolated epidermes of Commelina communis L. J Exp Bot 33(1):92–99. doi:10.1093/jxb/33.1.92

    Article  CAS  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Yang CH (2012) The hidden function of photosynthesis: a sensing system for environmental conditions that regulates plant acclimation responses. Protoplasma 249:125–136. doi:10.1007/s00709-012-0398-2

    Article  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999a) Photosynthetic control of chloroplast gene expression. Nature 397(6720):625–628

    Article  CAS  Google Scholar 

  • Pfannschmidt T, Nilsson A, Tullberg A, Link G, Allen JF (1999b) Direct transcriptional control of the chloroplast genes psbA and psaAB adjusts photosynthesis to light energy distribution in plants. IUBMB Life 48(3):271–276. doi:10.1080/713803507

    CAS  PubMed  Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103(4):599–607. doi:10.1093/aob/mcn081

    Article  CAS  PubMed  Google Scholar 

  • Piippo M, Allahverdiyeva Y, Paakkarinen V, Suoranta U-M, Battchikova N, Aro E-M (2006) Chloroplast-mediated regulation of nuclear genes in Arabidopsis thaliana in the absence of light stress. Physiol Genomics 25(1):142–152. doi:10.1152/physiolgenomics.00256.2005

    Article  CAS  PubMed  Google Scholar 

  • Poffenroth M, Green DB, Tallman G (1992) Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light. Plant Physiol 98(4):1460–1471. doi:10.1104/pp.98.4.1460

    Google Scholar 

  • Price GD, Evans JR, Caemmerer S, Yu J-W, Badger MR (1995) Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose bisphosphate regeneration in transgenic tobacco plants. Planta 195(3):369–378. doi:10.1007/bf00202594

    Article  CAS  PubMed  Google Scholar 

  • Price GD, von Caemmerer S, Evans JR, Siebke K, Anderson JM, Badger MR (1998) Photosynthesis is strongly reduced by antisense suppression of chloroplastic cytochrome bf complex in transgenic tobacco. Aust J Plant Physiol 25(4):445–452

    Article  CAS  Google Scholar 

  • Quick WP, Schurr U, Scheibe R, Schulze ED, Rodermel SR, Bogorad L, Stitt M (1991) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with “antisense” rbcS. I. Impact on photosynthesis in ambient growth conditions. Planta 183(4):542–554. doi:10.1007/bf00194276

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema MRG, Hanstein S, Felle HH, Hedrich R (2002) CO2 provides an intermediate link in the red light response of guard cells. Plant J 32(1):65–75. doi:10.1046/j.1365-313X.2002.01403.x

    Article  CAS  PubMed  Google Scholar 

  • Roelfsema MRG, Konrad KR, Marten H, Psaras GK, Hartung W, Hedrich R (2006) Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid. Plant Cell Environ 29(8):1595–1605. doi:10.1111/j.1365-3040.2006.01536.x

    Article  CAS  PubMed  Google Scholar 

  • Roth-Bejerano N, Itai C (1981) Involvement of phytochrome in stomatal movement: effect of blue and red light. Physiol Plant 52(2):201–206. doi:10.1111/j.1399-3054.1981.tb08494.x

    Article  CAS  Google Scholar 

  • Rott M, Martins NF, Thiele W, Lein W, Bock R, Kramer DM, Schöttler MA (2011) ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen. Plant Cell 23(1):304–321. doi:10.1105/tpc.110.079111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze E-D, Hall AE (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Springer-Verlag, Berlin, pp 181–230

    Chapter  Google Scholar 

  • Schwartz A, Zeiger E (1984) Metabolic energy for stomatal opening. Roles of photophosphorylation and oxidative phosphorylation. Planta 161(2):129–136. doi:10.1007/bf00395472

    Article  CAS  PubMed  Google Scholar 

  • Serrano EE, Zeiger E, Hagiwara S (1988) Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. Proc Natl Acad Sci U S A 85(2):436–440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharkey TD, Ogawa T (1987) Stomatal responses to light. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 195–208

    Google Scholar 

  • Sharkey TD, Raschke K (1981a) Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiol 68(5):1170–1174. doi:10.1104/pp.68.5.1170

  • Sharkey TD, Raschke K (1981b) Separation and measurement of direct and indirect effects of light on stomata. Plant Physiol 68(1):33–40. doi:10.1104/pp.68.1.33

    Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247. doi:10.1146/annurev.arplant.57.032905.105434

    Google Scholar 

  • Sibbernsen E, Mott KA (2010) Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells. Plant Physiol 153(3):1435–1442. doi:10.1104/pp.110.157685

    Google Scholar 

  • Stitt M, Quick WP, Schurr U, Schulze ED, Rodermel SR, Bogorad L (1991) Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. II. Flux-control coefficients for photosynthesis in varying light, CO2, and air humidity. Planta 183(4):555–566. doi:10.1007/bf00194277

    Article  CAS  PubMed  Google Scholar 

  • Talbott LD, Zhu JX, Han SW, Zeiger E (2002) Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum. Plant Cell Physiol 43(6):639–646. doi:10.1093/pcp/pcf075

  • Talbott LD, Shmayevich IJ, Chung Y, Hammad JW, Zeiger E (2003) Blue light and phytochrome-mediated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis. Plant Physiol 133(4):1522–1529. doi:10.1104/pp.103.029587

    Google Scholar 

  • Taylor AR, Assmann SM (2001) Apparent absence of a redox requirement for blue light activation of pump current in broad bean guard cells. Plant Physiol 125(1):329–338. doi:10.1104/pp.125.1.329

  • Tazawa M, Shimmmen T (1980) Direct demonstration of the involvement of chloroplasts in the rapid light-induced potential change in tonoplast-free cells of Chara australis. Replacement of Chara chloroplasts with spinach chloroplasts. Plant Cell Physiol 21(8):1527–1534

    Google Scholar 

  • Tjoelker MG, Volin JC, Oleksyn J, Reich PB (1995) Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment. Plant Cell Environ 18(8):895–905. doi:10.1111/j.1365-3040.1995.tb00598.x

    Article  CAS  Google Scholar 

  • Tominaga M, Kinoshita T, K Shimazaki (2001) Guard-cell chloroplasts provide ATP required for H+ pum** in the plasma membrane and stomatal opening. Plant Cell Physiol 42(8):795–802. doi:10.1093/pcp/pce101

    Article  CAS  PubMed  Google Scholar 

  • Travis AJ, Mansfield TA (1981) Light saturation of stomatal opening on the adaxial and abaxial epidermis of Commelina communis. J Exp Bot 32(6):1169–1179. doi:10.1093/jxb/32.6.1169

    Article  Google Scholar 

  • Trebst A (1980) Inhibitors in electron flow: tools for the functional and structural localization of carriers and energy conservation sites. In: San Pietro A (ed) Methods in enzymology, vol 69. Academic Press, pp 675–715. doi:10.1016/s0076-6879(80)69067-3

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165(3):665–682. doi:10.1111/j.1469-8137.2004.01276.x

    Article  CAS  PubMed  Google Scholar 

  • Vener AV, Ohad I, Andersson B (1998) Protein phosphorylation and redox sensing in chloroplast thylakoids. Curr Opin Plant Biol 1(3):217–223. doi:10.1016/s1369-5266(98)80107-6

    Article  CAS  PubMed  Google Scholar 

  • von Caemmerer S, Millgate A, Farquhar GD, Furbank RT (1997) Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase by antisense RNA in the C4 plant Flaveria bidentis leads to reduced assimilation rates and increased carbon isotope discrimination. Plant Physiol 113(2):469–477. doi:10.1104/pp.113.2.469

    Google Scholar 

  • von Caemmerer S, Lawson T, Oxborough K, Baker NR, Andrews TJ, Raines CA (2004) Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J Exp Bot 55(400):1157–1166. doi:10.1093/jxb/erh128

    Article  Google Scholar 

  • Wang F-F, Lian H-L, Kang C-Y, Yang H-Q (2010) Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant 3(1):246–259. doi:10.1093/mp/ssp097

    Google Scholar 

  • Wang Y, Noguchi K, Terashima I (2011) Photosynthesis-dependent and -independent responses of stomata to blue, red and green monochromatic light: differences between the normally oriented and inverted leaves of sunflower. Plant Cell Physiol 52(3):479–489. doi:10.1093/pcp/pcr005

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282(5737):424–426

    Article  Google Scholar 

  • Wong S-C, Cowan IR, Farquhar GD (1985a) Leaf conductance in relation to rate of CO2 assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. Plant Physiol 78(4):830–834. doi:10.1104/pp.78.4.830

    Google Scholar 

  • Wong S-C, Cowan IR, Farquhar GD (1985b) Leaf conductance in relation to rate of CO2 assimilation. II. Effects of short-term exposures to different photon flux densities. Plant Physiol 78(4):826–829. doi:10.1104/pp.78.4.826

    Google Scholar 

  • Wong S-C, Cowan IR, Farquhar GD (1985c) Leaf conductance in relation to rate of CO2 assimilation. III. Influences of water stress and photoinhibition. Plant Physiol 78(4):830–834. doi:10.1104/pp.78.4.830

    Google Scholar 

  • Zeiger E, Assmann SM, Meidner H (1983) The photobiology of Paphiopedilum stomata: opening under blue but not red light. Photochem Photobiol 38(5):627–630. doi:10.1111/j.1751-1097.1983.tb03394.x

    Article  Google Scholar 

Download references

Acknowledgments

I thank Nerea Ubierna, Crystal Vincent, and Susanne von Caemmerer for stimulating discussions and comments on a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian A. Busch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, F.A. Opinion: The red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain. Photosynth Res 119, 131–140 (2014). https://doi.org/10.1007/s11120-013-9805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9805-6

Keywords

Navigation