Log in

Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Several methods were developed for the redistribution of nitrogen (N) fertilizer within fields with winter wheat (Triticum aestivum L.) based on plant and soil sensors, and topographical information. The methods were based on data from nine field experiments in nine different fields for a 3-year period. Each field was divided into 80 or more subplots fertilized with 60, 120, 180 or 240 kg N ha−1. The relationships between plot yield, N application rate, sensor measurements and the interaction between N application and sensor measurements were investigated. Based on the established relations, several sensor-based methods for within-field redistribution of N were developed. It was shown that plant sensors predicted yield at harvest better than soil sensors and topographical indices. The methods based on plant sensors showed that N fertilizer should be moved from areas with low and high sensor measurements to areas with medium values.

The theoretical increase in yield and N uptake, and the reduced variation in grain protein content resulting from the application of the above methods were estimated. However, the estimated increases in crop yield, N-uptake and reduced variation in grain protein content were small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baden, G., Williams, A., & Hoey, D. (1987). The use of electromagnetic induction to detect the spatial variability of salt and clay content of soils. Australian Journal of Soil Resources, 25, 21–27.

    Article  Google Scholar 

  • Ebertseder, Th., Gutser, R., Hege, U., Brandhuber, R., & Schmidhalter, U. (2003). Strategies for site specific nitrogen fertilisation with respect to long-term environmental demands. In J. Stafford, & A. Werner (Eds.), Precision agriculture (pp. 193–198). Wageningen: Academic Publishers.

  • Flowers, M., Weisz, R., & Heiniger, R. (2003). Quantitative approaches for using color infrared photography for assessing in-season nitrogen status in winter wheat. Agronomy Journal, 95, 1189–1200.

    Article  Google Scholar 

  • Greve, M. H., Nehmdahl, H., & Krogh, L. (2003). Soil map** on the basis of soil electric conductivity measurements with EM38. In B. Linden, & S. E. Olesen (Eds.), Implementation of precision farming in practical agriculture (pp. 26–34). Denmark: Dias report no 100, Danish Institute of Agricultural Science.

    Google Scholar 

  • Hansen, P. M., Skjødt, P., & Jørgensen, R. N. (2003). Algorithm for variable nitrogen rate—application in winter wheat. In B. Linden, & S. E. Olesen (Eds.), Implementation of precision farming in practical agriculture (pp. 56–64). Denmark: Dias report no 100, Danish Institute of Agricultural Science.

    Google Scholar 

  • Heiniger, R. W., McBride, R. G., & Clay, D. E. (2003). Using soil electrical conductivity to improve nutrient management. Agronomy Journal, 95, 508–519.

    Article  CAS  Google Scholar 

  • Iqbal, M. (1983). An introduction to solar irradiation. USA: Academic Press Inc.

    Google Scholar 

  • Jiang, P., & Thelen, K. D. (2004). Effects of soil and topographic properties on crop yield in a north-central corn–soybean crop** system. Agronomy Journal, 96, 252–258.

    Article  Google Scholar 

  • Joernsgaard, B., & Halmoe, S. (2003). Intra-field yield variation over crops and years. European Journal of Agronomy, 19, 23–33.

    Article  Google Scholar 

  • Kitchen, N. R., Drummond, S. T., Lund, E. D., Sudduth, K. A., & Buchleiter, G. W. (2003). Soil electrical conductivity and topography related to yield for three contrasting soil–crop systems. Agronomy Journal, 95, 483–495.

    Article  Google Scholar 

  • LaRuffa, J. M., Raun, W. R., Phillips, S. B., Solie, J. B., Stone, M. L., & Johnson, G. V. (2001). Optimum field element size for maximum yields in winter wheat, using variable nitrogen rates. Journal of Plant Nutrition, 24, 313–325.

    Article  CAS  Google Scholar 

  • Lowenberg-DeBoer, J., & Swinton, S. (1997). Economics of site-specific management in agronomic crops. In P. Robert, R. Rust, & W. Larson (Eds.), The state of site-specific management for agriculture: Proceedings of the 3rd international conference on precision agriculture, Madison, WI, USA, pp. 369–396.

  • Lund, E. D., Wolcott, M. C., & Hanson, G. P. (2001). Applying nitrogen site-specifically using soil electrical conductivity maps and precision agriculture technology. The Scientific World, 1, 767–776.

    Google Scholar 

  • Lukina, E. V., Freeman, K. W., Wynn, K. J., Thomason, W. E., Mullen, R. W., Stone, M. L., Solie, J. B., Klatt, A. R., Johnson, G. V., Elliott, R. L., & Raun, W. R. (2001). Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. Journal of Plant Nutrition, 24, 885–898.

    Article  CAS  Google Scholar 

  • Pedersen, C. A. (2002). Oversigt over Landsforsøgene (in Danish). Denmark: Danish Agricultural Advisory Service.

    Google Scholar 

  • Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., Thomason, W. E., & Lukina, E. V. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.

    Article  Google Scholar 

  • Reuter, H. I., Wendroth, O., Kersebaum, K. C., & Schwarz, J. (2001). Solar radiation modelling for precisions farming—a feasible approach for better understanding variability of crop production. In G. Grenier, & S. Blackmore (Eds.), Third European conference on precision agriculture (pp. 845–850). Montpellier, France: ECPA.

    Google Scholar 

  • SAS Institute (1996). SAS/STAT software: Changes and enhancements through release 6.11. Cary, NC, USA: SAS Institute Inc.

    Google Scholar 

  • Solie, J. B., Raun, W. R., & Stone, M. L. (1999) Submeter spatial variability of selected soil and Bermudagrass production variables. Soil Science Society of America Journal, 63, 1724–1733.

    Article  CAS  Google Scholar 

  • Vrindts, E., Reyniers, M., Darius, P., De baerdemaeker, J., Gilot, M., Sadaoui, Y., Frankinet, M., Hanquet, B., & Destain, M.-F. (2003). Analysis of soil and crop properties for precision agriculture for winter wheat. Biosystems Engineering, 85, 141–152.

    Article  Google Scholar 

  • Wollring, J., Reusch, S., & Karlsson, C. (1998). Variable nitrogen application base on crop sensing. Proceedings No. 423. UK: The International Fertiliser Society.

    Google Scholar 

  • Welsh, J. P., Wood, G. A., Godwin, R. J., Taylor, J. C., Earl, R., Blackmore, B. S., Spoor, G., & Thomas, G. (1999). Develo** strategies for spatially variable nitrogen application. In J. V. Stafford (Ed.), Precision agriculture ‘99: Proceedings of the 2nd European conference on precision agriculture. Sheffield, UK: Sheffield Academic Press.

    Google Scholar 

  • Yang, C., Peterson, C. L., Shropshire, G. J., & Otawa, T. (1998). Spatial variability of field topography and wheat yield in the Palouse region of the Pacific Northwest. Transactions of the ASAE, 41, 17–27.

    Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

Download references

Acknowledgements

The algorithm development is based on field experiments and data analysis funded by the research programmes ‘Applied crop research’ financed by the Danish Agricultural Advisory Service and ‘Agriculture from a holistic resource perspective’ financed by the Danish Ministry of Food, Agriculture and Fisheries.

We wish to thank the following farmers and estates that have hosted the field experiments for their outstanding cooperation: Knud Gasbjerg, Carsten Jensen, Svend Laier, Egeskov Gods, Østergård Hovedgård, Ove Christoffersen, Geert H. de Lichtenberg, H.C. Neergård and Niels Balle. We also wish to thank Margit Schacht for greatly improving the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thomsen.

Appendix A

Appendix A

This appendix describes how to maximize yield (Eqs. 5, 6) given a fixed N application rate (Eq. 7). From Eq. 7 it can be seen that the N ij ’s depend on each other. Thus, simultaneous maximization of Eqs. 6, 7 is not immediately possible. However, Eq. (6) can be rearranged to

$$ N_{ik_i } = k_i N_i^* - \sum\limits_{j = 1}^{k_i - 1} {N_{ij} } . $$
(13)

Eqs. 5, 6 can now be reduced to

$$ \begin{aligned}{} Y_i^* \; = \sum\limits_{j = 1}^{k_i - 1} {Y_{ij} + Y_{ik_i } } \\ \; = \sum\limits_{j = 1}^{k_i - 1} {\left( {a_i N_{ij}^2 + \left( {b_i + f_i S_{ij} + g_i S_{ij}^2 + h_i S_{ij}^3 } \right)N_{ij} + c_i + d_i S_{ij} + e_i S_{ij}^2 } \right)} + \\ \quad + \left( {a_i \left( {k_i N_i^* - \sum\limits_{j = 1}^{k_i - 1} {N_{ij} } } \right)^2 + \left( {b_i + f_i S_{ik_i } + g_i S_{ik_i }^2 + h_i S_{ik_i }^3 } \right)\left( {k_i N_i^* - \sum\limits_{j = 1}^{k_i - 1} {N_{ij} } } \right) + c_i + d_i S_{ik_i } + e_i S_{ik_i }^2 } \right). \\ \end{aligned} $$
(14)

This equation is simplified by setting \(\alpha _{ij} = \left( {b_i + f_i S_{ij} + g_i S_{ij}^2 + h_i S_{ij}^3 } \right)\):

$$ \begin{aligned}{} Y_i^* \; = \;\sum\limits_{j = 1}^{k_i - 1} {\left( {a_i N_{ij}^2 + \alpha _{ij} N_{ij} + c_i + d_i S_{ij} + e_i S_{ij}^2 } \right)} + \\ \quad + \left( {a_i \left( {k_i N_i^* - \sum\limits_{j = 1}^{k_i - 1} {N_{ij} } } \right)^2 + \alpha _{ik_i } \left( {k_i N_i^* - \sum\limits_{j = 1}^{k_i - 1} {N_{ij} } } \right) + c_i + d_i S_{ik_i } + e_i S_{ik_i }^2 } \right). \\ \end{aligned} $$
(15)

In this equation the N ij ’s are independent and \(Y_i^* \) can be maximized by setting the partial derivative of \(Y_i^* \) with respect to N ij to zero:

$$ \frac{{\partial Y_i^* }} {{\partial N_{ij} }} = 0. $$
(16)

Eq. (15) is now differentiated and inserted into Eq. (16):

$$ 2a_i N_{ij} + \alpha _{ij} - 2a_i \left( {k_i N_i^* - \sum\limits_{j = 1}^{k_i - 1} {N_{ij} } } \right) - \alpha _{ik_i } = 0. $$
(17)

This equation is solved with respect to N ij using Eq. (13).

$$ N_{ij} = \frac{{ - 1}} {{2a_i }}\left( {\alpha _{ij} - 2a_i N_{ik_i } - \alpha _{ik_i } } \right). $$
(18)

Combining this equation with Eq. (13) gives

$$ \begin{aligned}{} N_{ik_i } & = k_i N_i^* - \sum\limits_{j = 1}^{k_i - 1} {N_{ij} } = k_i N_i^* - \sum\limits_{j = 1}^{k_i - 1} {\frac{{ - 1}} {{2a_i }}\left( {\alpha _{ij} - 2a_i N_{ik_i } - \alpha _{ik_i } } \right)} \\ & = k_i N_i^* - (k_i - 1)N_{ik_i } + \sum\limits_{j = 1}^{k_i - 1} {\left( {\frac{{\alpha _{ij} - \alpha _{ik_i } }} {{2a_i }}} \right)} . \\ \end{aligned} $$
(19)

This equation is then solved with respect to \(N_{ik_i } \)

$$ N_{ik_i } = \frac{1} {{k_i }}\left( {k_i N_i^* + \sum\limits_{j = 1}^{k_i - 1} {\left( {\frac{{\alpha _{ij} - \alpha _{ik_i } }} {{2a_i }}} \right)} } \right) = N_i^* + \sum\limits_{j = 1}^{k_i - 1} {\left( {\frac{{\alpha _{ij} - \alpha _{ik_i } }} {{2a_i k_i }}} \right)} . $$
(20)

Finally, this is inserted into Eq. (18)

$$ \begin{aligned}{} N_{ij} & = N_i^* + \sum\limits_{j = 1}^{k_i - 1} {\left( {\frac{{\alpha _{ij} - \alpha _{ik_i } }} {{2a_i k_i }}} \right)} - \frac{{\alpha _{ij} - \alpha _{ik_i } }} {{2a_i }} \\ & = N_i^* + \frac{1} {{2a_i }}\left( {\sum\limits_{j = 1}^{k_i - 1} {\left( {\frac{{\alpha _{ij} - \alpha _{ik_i } }} {{k_i }}} \right)} - \alpha _{ij} + \alpha _{ik_i } } \right) \\ & = N_i^* + \frac{1} {{2a_i }}\left( { - \alpha _{ij} + \sum\limits_{j = 1}^{k_i } {\frac{{\alpha _{ij} }} {{k_i }}} } \right). \\ \end{aligned} $$
(21)

Expanding \(\alpha _{ij} \) gives

$$ N_{ij} = N_i^* + \frac{1} {{2a_i }}\left( { - \left( {b_i + f_i S_{ij} + g_i S_{ij}^2 + h_i S_{ij}^3 } \right) + \sum\limits_{j = 1}^{k_i } {\frac{{\left( {b_i + f_i S_{ij} + g_i S_{ij}^2 + h_i S_{ij}^3 } \right)}} {{k_i }}} } \right). $$
(22)

To obtain a global model of how to redistribute N based on a sensor measurement (S ij ), it is evident from the above equation that a i , f i , g i and h i cannot be estimated for each field but must be determined as common factors for all experiments. It is also noted that b i and the sum are constants within a single field, which implies that Eq. (22) can be rewritten as

$$ N_{ij} = N_i^* + \frac{{f_i S_{ij} + g_i S_{ij}^2 + h_i S_{ij}^3 }} {{ - 2a_i }} + \gamma _i . $$
(23)

Under field conditions \(\gamma _i \) can be determined by noting that

$$ \begin{aligned}{} \sum\limits_{J = 1}^{k_i } {N_{ij} } & = \sum\limits_{J = 1}^{k_i } {\left( {N_i^* + \frac{{f_i S_{ij} + g_i S_{ij}^2 + h_i S_{ij}^3 }} {{ - 2a_i }} + \gamma _i } \right)} \\ & = k_i N_i^* + k_i \gamma _i + \sum\limits_{J = 1}^{k_i } {\left( {\frac{{f_i S_{ij} + g_i S_{ij}^2 + h_i S_{ij}^3 }} {{ - 2a_i }}} \right)} , \\ \end{aligned} $$
(24)

and by combining Eqs. 6, 22 the following expression is obtained:

$$ \gamma _i = \frac{{ - 1}} {{k_i }}\sum\limits_{j = 1}^{k_i } {\left( {\frac{{f_i S_{ij} + g_i S_{ij}^2 + h_i S_{ij}^3 }} {{ - 2a_i }}} \right)} . $$
(25)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berntsen, J., Thomsen, A., Schelde, K. et al. Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat. Precision Agric 7, 65–83 (2006). https://doi.org/10.1007/s11119-006-9000-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-006-9000-2

Keywords

Navigation