Log in

Analysis of Expressed Sequence Tags (ESTs) Collected from the Inflorescence of Chrysanthemum

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The expressed sequence tags (ESTs) described in this report were obtained from the inflorescence of chrysanthemum. A complementary DNA (cDNA) library was constructed from the inflorescence of the anemone-type chrysanthemum ‘Zhongshanzigui’. In total, 7,307 cDNA clones were sequenced, representing 4,563 unique sequences and consisting of 3,567 singletons and 996 contigs. Comparison to the GenBank nonredundant (nr) database revealed 57.2% (2,608/4,563) chrysanthemum sequences with homology to genes of known function of other organisms. Approximately 26.67% (1,217/4,563) of the unigenes were clustered into 23 categories by the clusters of orthologous group analysis: Most of the identified transcripts were genes related to metabolism, subcellular localization, protein biosynthesis, and cell wall structure. The ESTs presented here will be a valuable addition to floral development transcriptional database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

cDNA:

Complementary DNA

CDS:

Coding regions

contigs:

Contiguous consensus sequences

COGs:

The clusters of orthologous groups

ESTs:

Expressed sequence tags

nr:

Nonredundant

SNPs:

Single nucleotide polymorphisms

TFs:

Transcription factors

UTR:

Untranslated region

References

  • Aida R, Komano M, Saito M, Nakase K, Murai K (2008) Chrysanthemum flower shape modification by suppression of chrysanthemum-AGAMOUS gene. Plant Biotechnol 25:55–59

    CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488. doi:10.1038/35140

    Article  PubMed  CAS  Google Scholar 

  • Bey M, Stueber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H et al (2004) Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell 16(12):3197–3215. doi:10.1105/tpc.104.026724

    Article  PubMed  Google Scholar 

  • Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterization of the Arabidopsis SBP-box genes. Gene 237:91–104. doi:10.1016/S0378-1119(99)00308-X

    Article  PubMed  CAS  Google Scholar 

  • Carlson JE, Leebens-Mack JH, Wall PK, Zahn LM, Mueller LA, Landherr LL et al (2006) EST database for early flower development in California poppy (Eschscholzia californica Cham. Papaveraceae) tags over 6000 genes from a basal eudicot. Plant Mol Biol 62:351–369. doi:10.1007/s11103-006-9025-y

    Article  PubMed  Google Scholar 

  • Channeliere S, Riviere S, Scalliet G, Szecsi J, Jullien F, Dolle C et al (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38. doi:10.1016/S0014-5793(02)02413-4

    Article  PubMed  CAS  Google Scholar 

  • Cockshull KE (1985) Chrysanthemum morifolium. In: Halevy A (ed) CRC handbook of flowering, vol 2. CRC, Boca Raton, FL, pp 236–257

    Google Scholar 

  • Courtney-Gutterson N, Otten A, Firoozabady E, Akerboom M, Lemieux C, Nicholas J (1993) Production of genetically engineered color-modified chrysanthemum plants carrying a homologous chalcone synthase gene and their field performance. Acta Hortic 336:57–62

    Google Scholar 

  • Delseny M (2003) Towards an accurate sequence of the rice genome. Curr Opin Plant Biol 6:101–105. doi:10.1016/S1369-5266(03)00010-4

    Article  PubMed  CAS  Google Scholar 

  • Fourgoux-Nicol A, Drouaud J, Haouazine N, Pelletier G, Guerche P (1999) Isolation of rapeseed genes expressed early and specifically during development of the male gametophyte. Plant Mol Biol 40:857–872. doi:10.1023/A:1006282507095

    Article  PubMed  CAS  Google Scholar 

  • Fukai S (1995) Cryopreservation of germplasm of chrysanthemums. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Cryopreservation of plant germplasm I. Springer, Berlin, pp 447–457

    Google Scholar 

  • Hauser BA, He JQ, Park SO, Gasser CS (2000) TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 127:2219–2226

    PubMed  CAS  Google Scholar 

  • Katsuyoshi S, Takeshi I, Kazuma N, Kiyoshi M, Hiroaki K, Hitoshi W et al (2007) Analysis of expressed sequence tags from Petunia flowers. Plant Sci 173:495–500. doi:10.1016/j.plantsci.2007.07.011

    Article  CAS  Google Scholar 

  • Kieffer M, Davies B (2001) Developmental programmes in floral organ formation. Semin Cell Dev Biol 12:373–380. doi:10.1006/scdb.2001.0266

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto S, Ohmiya A (2006) Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiol Plant 128:436–447. doi:10.1111/j.1399-3054.2006.00761.x

    Article  CAS  Google Scholar 

  • Kostov RV, Small CL, McFadden BA (1997) Mutations in a sequence near the N-terminus of the small subunit alter the CO2/O2 specificity factor for ribulose bisphosphate carboxylase/oxygenase. Photosynth Res 54:127–134. doi:10.1023/A:1005967106993

    Article  CAS  Google Scholar 

  • Kotilainen M, Helariutta Y, Mehto M, Pöllänen E, Albert VA, Elomaa P et al (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Kotilainen M, Elomaa P, Uimari A, Albert VA, Yu D, Teeri TH (2000) GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Laitinen RAE, Immanen J, Auvinen P, Rudd S, Alatalo E, Paulin L et al (2005) Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Res 15:475–486. doi:10.1101/gr.3043705

    Article  PubMed  Google Scholar 

  • Lannenpaa M, Janonen I, Holtta-Vuori M, Gardemeister M, Porali I, Sopanen T (2004) A new SBP-box gene BpSPL1 in silver birch (Betula pendula). Physiol Plant 120:491–500. doi:10.1111/j.0031-9317.2004.00254.x

    Article  PubMed  Google Scholar 

  • Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142. doi:10.1016/S1534-5807(02)00122-3

    Article  PubMed  CAS  Google Scholar 

  • Ma YP, Fang XH, Chen F, Dai SL (2008) DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues. Plant Cell Rep 27:647–654. doi:10.1007/s00299-007-0489-2

    Article  PubMed  CAS  Google Scholar 

  • Moriyasu Y, Hattori M, Jauh GY, Rogers JC (2003) Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 44(8):795–802. doi:10.1093/pcp/pcg100

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka T, Mishibaa K, Abe Y, Kubota A, Kakizaki Y, Yamamura S et al (2008) Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Biotechnol 25:61–68

    CAS  Google Scholar 

  • Nilsson O, Lee H, Blazquez MA, Weigel D (1998) Flowering time genes modulate the response to LEAFY activity. Genetics 150(1):403–410

    PubMed  CAS  Google Scholar 

  • Ohlrogge B (2000) Unravelling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228

    PubMed  CAS  Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201. doi:10.1104/pp.106.087130

    Article  PubMed  CAS  Google Scholar 

  • Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter–terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta 216:1003–1012

    PubMed  CAS  Google Scholar 

  • Pang Y, Shen G, Wu W, Liu X, Lin J, Tan F et al (2005) Characterization and expression of chalcone synthase gene from Ginkgo biloba. Plant Sci 168(6):1525–1531. doi:10.1016/j.plantsci.2005.02.003

    Article  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110. doi:10.1126/science.290.5499.2105

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Yanofsky MF, Weigel D (1998) Patterning the floral meristem. Semin Cell Dev Biol 9:221–226. doi:10.1006/scdb.1997.0206

    Article  PubMed  CAS  Google Scholar 

  • Shchennikova AV, Shulga OA, Angenent GC, Skryabin KG (2003) Genetic regulation of inflorescence development in Chrysanthemum. Dokl Biol Sci 391:368–370. doi:10.1023/A:1025123222257

    Article  PubMed  CAS  Google Scholar 

  • Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC (2004) Identification and characterization of four Chrysanthemum MADS-Box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134:1632–1641. doi:10.1104/pp.103.036665

    Article  PubMed  CAS  Google Scholar 

  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    PubMed  CAS  Google Scholar 

  • Spencer DF, Schnare MN, Coulthart MB, Gray MW (1992) Sequence and organization of a 7.2 kb region of wheat mitochondrial DNA containing the large subunit (26S) rRNA gene. Plant Mol Biol 20:347–352. doi:10.1007/BF00014506

    Article  PubMed  CAS  Google Scholar 

  • Sung ZR, Chen L, Moon YH, Lertpiriyapong K (2003) Mechanisms of floral repression in Arabidopsis. Curr Opin Plant Biol 6:29–35. doi:10.1016/S1369-5266(02)00014-6

    Article  PubMed  CAS  Google Scholar 

  • Tsai WC, Hsiao YY, Lee SH, Tung CW, Wang DP, Wang HC et al (2006) Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci 170:426–432. doi:10.1016/j.plantsci.2005.08.029

    Article  CAS  Google Scholar 

  • Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H et al (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15:1009–1019. doi:10.1105/tpc.010678

    Article  PubMed  CAS  Google Scholar 

  • Weigel D (1998) From floral induction to floral shape. Curr Opin Plant Biol 1:55–59. doi:10.1016/S1369-5266(98)80128-3

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209. doi:10.1016/0092-8674(94)90291-7

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Huang J, Gu H, Zhong Y, Yang Z (2002) Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). Mol Biol Evol 19(10):1752–1759

    PubMed  CAS  Google Scholar 

  • Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E et al (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34. doi:10.1023/B:MOLB.0000037992.03731.a5

    Article  CAS  Google Scholar 

  • Yu D, Kotilainen M, Pollanen E, Mehto M, Elomaa P, Helariutta Y et al (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62. doi:10.1046/j.1365-313X.1999.00351.x

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, Yu Q, Chen C, Ma H (2001) Genetic control of reproductive meristems. In: McManus MT, Veit B (eds) Annual plant review: meristematic tissues in plant growth and development. Sheffield Academic, Sheffield, pp 89–142

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Hiroaki Kodama of Graduate School of Horticulture, Chiba University, Japan, for his advices on cDNA library construction and Bei**g Genomics Institute (BGI) for EST sequencing and assembling. This work was supported by the Program for New Century Excellent Talents in University of Chinese Ministry of Education (Grant No. NCET-06-0489), the National Natural Science Foundation of China (Grant No. 30872064), China Postdoctoral Science Foundation funded project (Grant No. 20070411058), and National Key Technology R&D Program of the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2006BAD01A1806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Chen.

Additional information

S. Chen and H. Miao contributed equally to this work reported here.

The chrysanthemum EST sequences have been submitted to the DDBJ Nucleotide Sequence Database under accession nos. DK936567–DK943490.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Miao, H., Chen, F. et al. Analysis of Expressed Sequence Tags (ESTs) Collected from the Inflorescence of Chrysanthemum. Plant Mol Biol Rep 27, 503–510 (2009). https://doi.org/10.1007/s11105-009-0103-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0103-6

Keywords

Navigation