Log in

Mowing increased plant diversity but not soil microbial biomass under N-enriched environment in a temperate grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The anthropogenic nitrogen (N) input has considerable consequences on soil microbial biomass, which is critical for biogeochemical cycling. As prevalent grassland management, mowing may reduce soil N storage, enhance plant biodiversity and soil microbial carbon (C) availability, all of which are important regulators of soil microbial biomass. However, convincing data is still scarce about how mowing affects soil microbial biomass under N enrichment.

Methods

The interactive effects of N addition (0 – 50 g N m−2 yr−1) and mowing (unmown vs. mown) on soil microbial biomass C (MBC) were measured by manipulating 6 years’ N addition experiment in Inner Mongolia grassland of China.

Results

Mowing increased soil inorganic N concentration, available Cu2+ concentration, plant aboveground net primary production (ANPP), species richness, Shannon-Wiener biodiversity and ratio of fungal to bacterial biomass, and decreased soil available Mn2+ concentration under N enrichment. Mowing also significantly reduced the dominance of Leymus chinensis. While mowing did not affect the soil MBC compared with that in only N added plots. The soil MBC was positively regulated by plant species richness and biodiversity, while was negatively regulated by ANPP, soil inorganic N, available Cu2+ and Mn2+ concentration in mown plots.

Conclusions

The results highlight that mowing cannot mitigate the negative effects of N enrichment on soil MBC. The soil, plant and microbial properties play important roles in regulating the response of soil MBC to mowing in N-enriched soil. This work improves the mechanistic understanding of the linkages between plant community and soil microbial C cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai W, Wan S, Niu S, Liu W, Chen Q, Wang Q, Zhang W, Han X, Li L (2010a) Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Chang Biol 16:1306–1316

    Article  Google Scholar 

  • Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010b) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Bai W, Guo D, Tian Q, Liu N, Cheng W, Li L, Zhang W-H, McCulley R (2015) Differential responses of grasses and forbs led to marked reduction in below-ground productivity in temperate steppe following chronic N deposition. J Ecol 103:1570–1579

    Article  CAS  Google Scholar 

  • Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2009) Contrasting effects of glucose, living roots and maize straw on microbial growth kinetics and substrate availability in soil. Eur J Soil Sci 60:186–197

    Article  CAS  Google Scholar 

  • Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, Alberti J, Anderson TM, Bakker JD, Biederman L, Blumenthal D, Brown CS, Brudvig LA, Buckley YM, Cadotte M, Chu C, Cleland EE, Crawley MJ et al (2014) Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517–520

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Bai Y, Zhang L, Han X (2005) Comparing physiological responses of two dominant grass species to nitrogen addition in **lin River basin of China. Environ Exp Bot 53:65–75

    Article  Google Scholar 

  • Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF, Niu SL (2016) Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Funct Ecol 30:658–669

    Article  Google Scholar 

  • Dang Z, Jia Y, Tian Y, Li J, Zhang Y, Huang L, Liang C, Lockhart PJ, Matthew C, Li FY (2021) Transcriptome-wide gene expression plasticity in Stipa grandis in response to grazing intensity differences. Int J Mol Sci 22:11882

  • Denef K, Bubenheim H, Lenhart K, Vermeulen J, Van Cleemput O, Boeckx P, Müller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779

  • Diabate B, Wang X, Gao Y, Yu P, Wu Z, Zhou D, Yang H (2018) Tillage and haymaking practices speed up belowground net productivity restoration in the degraded Songnen grassland. Soil Tillage Res 175:62–70

    Article  Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HTS, Bodelier PLE, Whiteley AS, Veen JAv, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci USA 107:10938–10942

  • Eastman BA, Adams MB, Brzostek ER, Burnham MB, Carrara JE, Kelly C, McNeil BE, Walter CA, Peterjohn WT (2021) Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions. New Phytol 230:1435–1448

    Article  CAS  PubMed  Google Scholar 

  • FAO (1997) Unesco Soil map of the world: revised legend with corrections and updates. Wageningen: ISRIC,140 p. (Technical paper / ISRIC)

  • Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602

    Article  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889

    Article  CAS  PubMed  Google Scholar 

  • Geisseler D, Lazicki PA, Scow KM (2016) Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Appl Soil Ecol 106:1–10

    Article  Google Scholar 

  • Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD (2016) Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127:173–188

    Article  CAS  Google Scholar 

  • Głąb T, Gondek K (2014) The influence of soil compaction and N fertilization on physico-chemical properties of Mollic Fluvisol soil under red clover/grass mixture. Geoderma 226-227:204–212

    Article  Google Scholar 

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605

    Article  CAS  PubMed  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  • Hautier Y, Niklaus AP, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638

    Article  CAS  PubMed  Google Scholar 

  • Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T, Högberg P (2010) Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187:485–493

    Article  PubMed  Google Scholar 

  • Jia YL, Yu GR, He NP, Zhan XY, Fang HJ, Sheng WP, Zuo Y, Zhang DY, Wang QF (2014) Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Sci Rep 4:3763

    Article  PubMed  PubMed Central  Google Scholar 

  • Keiblinger KM, Schneider M, Gorfer M, Paumann M, Deltedesco E, Berger H, Jochlinger L, Mentler A, Zechmeister-Boltenstern S, Soja G, Zehetner F (2018) Assessment of cu applications in two contrasting soils-effects on soil microbial activity and the fungal community structure. Ecotoxicol 27:217–233

    Article  CAS  Google Scholar 

  • Klumpp K, Fontaine S, Attard E, Le Roux X, Gleixner G, Soussana J-F (2009) Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J Ecol 97:876–885

    Article  CAS  Google Scholar 

  • Kotas P, Choma M, Šantrůčková H, Lepš J, Tříska J, Kaštovská E (2017) Linking above- and belowground responses to 16 years of fertilization, mowing, and removal of the dominant species in a temperate grassland. Ecosystems 20:354–367

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669

    Article  CAS  PubMed  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707

    Article  CAS  PubMed  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Li Y, Sun J, Tian DS, Wang JS, Ha DL, Qu YX, **g GW, Niu SL (2018) Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Sci Total Environ 615:1535–1546

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Amelung W, Lehmann J, Kastner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol 25:3578–3590

    Article  PubMed  Google Scholar 

  • Liu WX, Jiang L, Hu SJ, Li LH, Liu LL, Wan SQ (2014) Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biol Biochem 72:116–122

    Article  CAS  Google Scholar 

  • Liu N, Kan HM, Yang GW, Zhang YJ (2015) Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecol Monogr 85:269–286

    Article  Google Scholar 

  • Lou L, Shen Z, Li X (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120

    Article  CAS  Google Scholar 

  • Lovell RD, Jarvis SC, Bardgett RD (1995) Soil microbial biomass and activity in long-term grassland: effects of management changes. Soil Biol Biochem 27:969–975

    Article  CAS  Google Scholar 

  • Luo Y, Wang X, Cui M, Wang J, Gao Y (2021) Mowing increases fine root production and root turnover in an artificially restored Songnen grassland. Plant Soil 465:549–561

    Article  CAS  Google Scholar 

  • Martinez C, Alberti G, Cotrufo MF, Magnani F, Zanotelli D, Camin F, Gianelle D, Cescatti A, Rodeghiero M (2016) Belowground carbon allocation patterns as determined by the in-growth soil core 13C technique across different ecosystem types. Geoderma 263:140–150

    Article  CAS  Google Scholar 

  • Min K, Slessarev E, Kan M, McFarlane K, Oerter E, Pett-Ridge J, Nuccio E, Berhe AA (2021) Active microbial biomass decreases, but microbial growth potential remains similar across soil depth profiles under deeply-vs. shallow-rooted plants. Soil Biol Biochem 162:108401

    Article  CAS  Google Scholar 

  • Mládková P, Mládek J, Hejduk S, Hejcman M, Cruz P, Jouany C, Pakeman RJ (2015) High-nature-value grasslands have the capacity to cope with nutrient impoverishment induced by mowing and livestock grazing. J Appl Ecol 52:1073–1081

    Article  Google Scholar 

  • Mounissamy VC, Kundu S, Selladurai R, Saha JK, Biswas AK, Adhikari T, Patra AK (2017) Effect of soil amendments on microbial resilience capacity of acid soil under copper stress. Bull Environ Contam Toxicol 99:625–632

    Article  CAS  PubMed  Google Scholar 

  • Ning Q, Hättenschwiler S, Lü X, Kardol P, Zhang Y, Wei C, Xu C, Huang J, Li A, Yang J, Wang J, Peng Y, Peñuelas J, Sardans J, He J, Xu Z, Gao Y, Han X (2021) Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Glob Chang Biol 27:5976–5988

    Article  CAS  PubMed  Google Scholar 

  • Oelmann Y, Broll G, Hölzel N, Kleinebecker T, Vogel A, Schwartze P (2009) Nutrient impoverishment and limitation of productivity after 20 years of conservation management in wet grasslands of North-Western Germany. Biol Conserv 142:2941–2948

    Article  Google Scholar 

  • Pan Q, Bai Y, Wu J, Han X (2011) Hierarchical plant responses and diversity loss after nitrogen addition: testing three functionally-based hypotheses in the Inner Mongolia grassland. PLoS One 6:e20078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.r-project.org/

  • Rappe-George MO, Choma M, Čapek P, Börjesson G, Kaštovská E, Šantrůčková H, Gärdenäs AI (2017) Indications that long-term nitrogen loading limits carbon resources for soil microbes. Soil Biol Biochem 115:310–321

    Article  CAS  Google Scholar 

  • Rousk J, Jones DL (2010) Loss of low molecular weight dissolved organic carbon (DOC) and nitrogen (DON) in H2O and 0.5M K2SO4 soil extracts. Soil Biol Biochem 42:2331–2335

    Article  CAS  Google Scholar 

  • Rousk K, Michelsen A, Rousk J (2016) Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Glob Chang Biol 22:4150–4161

    Article  PubMed  Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleuss P-M, Widdig M, Heintz-Buschart A, Guhr A, Martin S, Kirkman K, Spohn M (2019) Stoichiometric controls of soil carbon and nitrogen cycling after long-term nitrogen and phosphorus addition in a Mesic grassland in South Africa. Soil Biol Biochem 135:294–303

    Article  CAS  Google Scholar 

  • Singh JS, Gupta VK (2018) Soil microbial biomass: a key soil driver in management of ecosystem functioning. Sci Total Environ 634:497–500

    Article  CAS  PubMed  Google Scholar 

  • Smith B, Wilson JB (1996) A Consumer's guide to evenness indices. Oikos 76:70–82

    Article  Google Scholar 

  • Socher SA, Prati D, Boch S, Müller J, Klaus VH, Hölzel N, Fischer M, Wilson S (2012) Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J Ecol 100:1391–1399

    Article  Google Scholar 

  • Sokol NW, Bradford MA (2019) Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci 12:46–53

    Article  CAS  Google Scholar 

  • Storkey J, Macdonald AJ, Poulton PR, Scott T, Kohler IH, Schnyder H, Goulding KW, Crawley MJ (2015) Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528:401–404

    Article  CAS  PubMed  Google Scholar 

  • Thakur MP, Milcu A, Manning P, Niklaus PA, Roscher C, Power S, Reich PB, Scheu S, Tilman D, Ai F, Guo H, Ji R, Pierce S, Ramirez NG, Richter AN, Steinauer K, Strecker T, Vogel A, Eisenhauer N (2015) Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob Chang Biol 21:4076–4085

    Article  PubMed  Google Scholar 

  • Tian DS, Niu SL (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:024019

    Article  Google Scholar 

  • Tian Q, Liu N, Bai W, Li L, Chen J, Reich PB, Yu Q, Guo D, Smith MD, Knapp AK, Cheng W, Lu P, Gao Y, Yang A, Wang T, Li X, Wang Z, Ma Y, Han X, Zhang W (2016) A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology 97:65–74

    Article  PubMed  Google Scholar 

  • Tilman D, Isbell F (2015) Biodiversity: recovery as nitrogen declines. Nature 528:336–337

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Van Den Berg LJL, Dorland E, Vergeer P, Hart MAC, Bobbink R, Roelofs JGM (2005) Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol 166:551–564

    Article  PubMed  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wan S, Luo Y, Wallace LL (2002) Changes in microclimate induced by experimental warming and clip** in tallgrass prairie. Glob Chang Biol 8:754–768

    Article  Google Scholar 

  • Wang C, Butterbach-Bahl K, Han Y, Wang Q, Zhang L, Han X, **ng X (2011) The effects of biomass removal and N additions on microbial N transformations and biomass at different vegetation types in an old-field ecosystem in northern China. Plant Soil 340:397–411

    Article  CAS  Google Scholar 

  • Wang C, Zhu F, **ang Z, Kuanhu D (2014) The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of loess plateau of northern China. Geoderma 213:419–425

    Article  CAS  Google Scholar 

  • Wang R, Dorodnikov M, Dijkstra FA, Yang S, Xu Z, Li H, Jiang Y (2017) Sensitivities to nitrogen and water addition vary among microbial groups within soil aggregates in a semiarid grassland. Biol Fert Soils 53:129–140

    Article  CAS  Google Scholar 

  • Wang J, Gao YZ, Zhang YH, Yang JJ, Smith MD, Knapp AK, Eissenstat DM, Han XG (2019) Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Glob Chang Biol 25:2958–2969

    Article  PubMed  Google Scholar 

  • Wang K, Zhong S, Sun W (2020) Clip** defoliation and nitrogen addition shift competition between a C3 grass (Leymus chinensis) and a C4 grass (Hemarthria altissima). Plant Biol (Stuttg) 22:221–232

    Article  CAS  PubMed  Google Scholar 

  • Xue K, Yuan MM, **e J, Li D, Qin Y, Hale LE, Wu L, Deng Y, He Z, Van Nostrand JD, Luo Y, Tiedje JM, Zhou J (2016) Annual removal of aboveground plant biomass alters soil microbial responses to warming. mBio 7:e00976-16

  • Yang GJ, Lu XT, Stevens CJ, Zhang GM, Wang HY, Wang ZW, Zhang ZJ, Liu ZY, Han XG (2019) Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia 189:769–779

    Article  PubMed  Google Scholar 

  • Zhang W, Parker KM, Luo Y, Wan S, Wallace LL, Hu S (2005) Soil microbial responses to experimental warming and clip** in a tallgrass prairie. Glob Chang Biol 11:266–277

    Article  CAS  Google Scholar 

  • Zhang YH, Lü XT, Isbell F, Stevens C, Han X, He NP, Zhang GM, Yu Q, Huang JH, Han XG (2014) Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Glob Chang Biol 20:3520–3529

    Article  PubMed  Google Scholar 

  • Zhang Y, Loreau M, He N, Zhang G, Han X, Power S (2017) Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Funct Ecol 31:1637–1646

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou ZH, Wang CK, Zheng MH, Jiang LF, Luo YQ (2017) Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol Biochem 115:433–441

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciated Dr. Feike Dijkstra at the University of Sydney and **aotao Lv at the Institute of Applied Ecology, Chinese Academy of Sciences for providing helpful comments on an early version of this manuscript. We thank the Inner Mongolia Grassland Ecosystem Research Station for logistical support. This work was supported by the National Natural Science Foundation of China (42130515 and 31770506), the Open Foundation of the State Key Laboratory of Urban and Regional Ecology of China, and the open Foundation of the State Key Laboratory of Grassland Agro-ecosystems of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ngguo Han or Junjie Yang.

Additional information

Responsible Editor: Zucong Cai.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 582 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Q., Jiang, L., Niu, G. et al. Mowing increased plant diversity but not soil microbial biomass under N-enriched environment in a temperate grassland. Plant Soil 491, 205–217 (2023). https://doi.org/10.1007/s11104-022-05332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05332-5

Keywords

Navigation