Log in

Molecular characterization of GmSTOP1 homologs in soybean under Al and proton stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The Sensitive to Proton Rhizotoxicity1 (STOP1) transcription factor has been implicated in the regulation of aluminium (Al) stress and proton toxicity for several plant species. This study aimed to characterize STOP1 homologs in soybean.

Method

Five GmSTOP1 homologs were studied by transcriptional expression, subcellular localization and overexpression experiments.

Results

Five GmSTOP1 homologs were nuclear-localized and exhibited transactivation activity. They constitutively expressed throughout the whole soybean plant. Their expressions were increased from 2 h, peaked at 4 h, returned to basal levels for the remaining duration of Al treatment but varied in aptitude and genotype. They were sensitive to pH conditions with various responses. Overexpression of GmSTOP1a in soybean hairy root increased the expression of the malate transporter gene GmALMT1, and decreased Al accumulation under Al stress. Its overexpression also regulated some pH-sensitive genes, including GmSTOP1c and GmCIPK23. Overexpression of GmSTOP1a in Arabidopsis slightly increase its Al resistance, and partially restored the root growth of the atstop1 mutant under Al stress.

Conclusion

GmSTOP1a contributes to both proton and Al resistance and plays a role similar to that of AtSTOP1. The functions of other four GmSTOP1 genes need further clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Phylogenetic tree and multiple sequence alignment of GmSTOP1 with known STOP1 orthologous proteins from other plant species.
Fig. 2: Temporal expression of five GmSTOP1 genes in soybean root apices under Al stress.
Fig. 3: Transcriptional expression of five GmSTOP1 genes in response to Cd 2+ , La 3+ , Cu 2+ , and Al 3+ stress in soybean root apices.
Fig. 4: Transcriptional expression of five GmSTOP1 genes in response to different pH conditions.
Fig. 5: Transcriptional expression of five GmSTOP1 genes in soybean different root segments under Al stress.
Fig. 6: Spatial expression of five GmSTOP1-like genes in soybean.
Fig. 7: Subcellular localization of STOP1 and homologous proteins.
Fig. 8: Transactivation activity of GmSTOP1-like protein.
Fig. 9: The transcriptional expression in GmSTOP1a-OE hair roots under Al stress.
Fig. 10: The transcriptional expression in GmSTOP1a-OE hairy roots in response to different pH conditions.
Fig. 11: Phenotype of Al resistance of Arabidopsis atstop1 mutants complementarily expressing GmSTOP1a under Al stress.
Fig. 12: Phenotype of Al resistance of Arabidopsis atstop1 mutants complementarily expressing GmSTOP1a under different pH conditions.

Similar content being viewed by others

Abbreviations

Al:

Aluminum

CaMV:

Cauliflower mosaic virus

STOP1:

Sensitive to Proton Rhizotoxicity1

ART1:

Aluminum resistance transcription factor 1

References

  • Chen ZC, Yamaji N, Motoyama R, Ma JF (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiol 159:1624–1633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliama. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan W, Lou HQ, Gong YL, Liu MY, Cao MJ, Liu Y, Yang JL, Zheng SJ (2015) Characterization of an inducible C2H2-type zinc finger transcription factor VuSTOP1 in rice bean (Vigna umbellata) reveals differential regulation between low pH and aluminum tolerance mechanisms. New Phytol 208:456–468

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Oliveira AL, Benito C, Prieto P, de Andrade Menezes R, Rodrigues-Pousada C, Guedes-Pinto H, Martins-Lopes P (2013) Molecular characterization of TaSTOP1 homoelogues and their response to aluminum and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biol 13:134–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  PubMed  CAS  Google Scholar 

  • Horst WJ, Asher CJ, Cakmak L, Szulkiewicz P, Wissemeier AH (1992) Short-term response of soybean roots to aluminium. Plant Physiol 140:174–178

    Article  CAS  Google Scholar 

  • Huang S, Gao J, You JF, Liang Y, Guan K, Yan S, Zhan M, Yang Z (2018) Identification of STOP1-like proteins associated with aluminum tolerance in sweet sorghum. Front Plant Sci 9:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and co-regulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A 104:9900–9905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iuchi S, Kobayashi Y, Koyama H, Kobayashi M (2008) STOP1, a Cys2/His2 type zinc-finger protein, plays critical role in acid tolerance in Arabidopsis. Plant Signal Behav 3:128–132

    Article  PubMed  PubMed Central  Google Scholar 

  • Iuchi S, Kobayashi Y, Koyama H, Kobayashi M (2009) STOP1, a Cys2/His2 type zinc-finger protein, plays critical role in acid soil tolerance in Arabidopsis. Plant Signal Behav 3(2):128–130

  • Kiebowicz-Matuk A (2012) Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Sci 185:78–85

    Article  CAS  Google Scholar 

  • Kobayashi Y, Ohyama Y, Kobayashi Y, Ito H, Iuchi S, Fujita M, Zhao CR, Tanveer T, Ganesan M, Kobayashi M, Koyama H (2014) STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7:311–322

    Article  PubMed  CAS  Google Scholar 

  • Kochain LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Cancel J, Rounds M, Ochoa V (2007) Arabdipsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225:1447–1458

    Article  PubMed  CAS  Google Scholar 

  • Liang CY, Pineros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H (2013) Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, and Schimittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delt][Delt] CT method. Methods 25:402–408

  • Mora-Macías J, Ojeda-Rivera JO, Gutiérrez-Alanís D (2017) Malate-dependent Fe accumulation is a critical checkpoint in the root developmental response to low phosphate. PNAS114:E3563

  • Nian H, Yang ZM, Hang H, Yan X, Matsumoto H (2004) Citrate secretion induced by aluminum stress may not be a key mechanism responsile for differential aluminum tolerance of some genotypes. J Plant Nutr 27:2047–2066

    Article  CAS  Google Scholar 

  • Ohyama Y, Ito H, Kobayashi Y (2013) Characterization of AtSTOP1 orghologous genes in tobacco and other plant species. Plant Physiol 162:1937–1946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pannatier EG, Luster J, Zimmermann S et al (2005) Monitoring of water chemistry in forest soils: an Indicator for acidification. Chimia(Aarau) 59:989

    CAS  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayasi Y (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawaki Y, Kobayashi Y, Kihara-Doi T (2014) Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes. Plant Sci 223:8–15

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Graham MY, Yu O et al (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Liang C, Chen Z, Liu P, Tian J, Liu G, Liao H (2014) Superior aluminium (Al) tolerance of Stylosanthes, is achieved mainly by malate synthesis through an Al-enhanced malic enzyme, SgME1. New Phytol 202:209–219

    Article  PubMed  CAS  Google Scholar 

  • Tang QY and Zhang CX (2012) Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Science 20(2):254–260

  • Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M, Tada Y, Yamamoto YY, Koyama H (2015) Senstive to proton rhizotoxicity1, calmodulin binding transcription activator2, and other transcription factors are involved in aluminum-activated malate transporter1 expression. Plant Physiol 167:991–1003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • **a JX, Yamaji N, Ma JF (2013) A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J 76:345–355

    PubMed  CAS  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaji N, Fujii MD, Yokosho K et al (2015) Possibility of trade-off between acidic and alkaline soil adaptation in graminaceous plants. Proceedings of the 9th international symposium on plant-soil interactions at low pH Dubrovnik, Croatia, October 18-23:77–78

  • Yang ZM, Sivaguru M, Horst WJ, Matsumoto H (2000) Aluminium tolerance is achieved by exudation of citric acid from roots of soybean ( Glycine max ). Physiol Plant 110:72–77

    Article  CAS  Google Scholar 

  • Yang ZM, Nian H, Sivaguru M, Tanakamaru S, Matsumotob H (2001) Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants. Physiol Plant 113:64–71

    Article  CAS  Google Scholar 

  • You JF, Zhang H, Liu N, Gao L, Kong L, Yang Z (2011) Transcriptomic responses to aluminum stress in soybean roots. Genome 54:923–933

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Yang Z, Xu Y, Sun H, Sun Z, Lin B, Sun W, You J (2018) Soybean NADP-malic enzyme functions in malate and citrate metabolism and contributes to their efflux under Al stress. Front Plant Sci 8:2246. https://doi.org/10.3389/fpls.2017.02246

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support was provided by National Natural Science Foundation of China (No. 31372124) and Natural Science Foundation of Jilin Province (20130101084JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiangFeng You.

Additional information

Responsible Editor: Jian Feng Ma.

Electronic supplementary material

ESM 1

(DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yang, Z., Gong, L. et al. Molecular characterization of GmSTOP1 homologs in soybean under Al and proton stress. Plant Soil 427, 213–230 (2018). https://doi.org/10.1007/s11104-018-3645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3645-2

Keywords

Navigation