Log in

Effects of fertilization and irrigation on productivity, plant nutrient contents and soil nutrients in southern Mongolia

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The study attempts to evaluate the effect of fertilization and irrigation on steppe productivity in dry southern Mongolian desert-steppes. We conducted an irrigation- and NPK fertilization experiment, irrigating at levels of +100 mm and fertilizers at amounts equivalent to 20 gN (m² year)−1 in a factorial design. We tested the effects on soil nutrients and biomass production. Nutrients in plant tissue were analysed for Stipa krylovii and S. gobica, and for mixed sub-samples of total above- and belowground biomass. Available P and K and total K increased in the soil after fertilization while irrigation reduced total N. Biomass yield almost tripled and inflorescence numbers increased by factors of 4–8 due to fertilization while irrigation alone had very restricted effects and only increased biomass of Agropyron cristatum. Nutrient content of biomass was elevated on fertilized plots. Results indicate that steppe productivity is severely restricted by nutrient availability even under ambient precipitation levels, raising the question whether nutrient withdrawal caused by current land use practices has detrimental effects on pasture productivity. The anticipated beneficial effect of increasing water availability however could not be confirmed. Whether there is an improvement in productivity due to increasing rainfall, as predicted by some climate change models, will depend on the distribution and intensity of rain events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Bai YF, Wu Y, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2009) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Bläß C, Ronnenberg K, Hensen I, Wesche K (2009) Grazing impact on plant seed production in Southern Mongolia. Mongolian Journal of Biological Sciences 6:3–9

    Google Scholar 

  • Breman H, de Wit CT (1983) Rangeland productivity and exploitation in the Sahel. Science 221:1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Chen B-M, Wang G-X, Peng S-L (2009a) Role of desert annuals in nutrient flow in arid area of Northwestern China: a nutrient reservoir and provider. Plant Ecol 201:401–409

    Article  Google Scholar 

  • Chen S, Lin G, Huang J, Jenerette GD (2009b) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Chang Biol 15:2450–2461

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor, HL Miller (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 847–940

  • Cross AF, Schlesinger WH (2001) Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry 52:155–172

    Article  CAS  Google Scholar 

  • Dagvadorj D, Khuldorj B, Aldover R (eds) (2009) Mongolia assessment report on climate change 2009. Ministry of Nature, Environment and Tourism, Mongolia, Ulaanbaatar, 228 p

  • Dore MHI (2005) Climate change and changes in global precipitation patterns: what do we know? Environ Int 31:1167

    Article  PubMed  Google Scholar 

  • Drenovsky RE, Richards JH (2004) Critical N:P values: predicting deficiencies in desert shrublands. Plant Soil 259:59–69

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Fernandez-Gimenez ME, Allen-Diaz B (2001) Vegetation change along gradients from water sources in three grazed Mongolia ecosystems. Plant Ecol 157:101–118

    Article  Google Scholar 

  • Fisher FM, Zak JC, Cunningham GL, Whitford WG (1988) Water and nitrogen effects on growth and allocation patterns of creosotebush in the northern Chihuahuan desert. J Range Manage 41:387–391

    Article  Google Scholar 

  • Fravolini A, Hultine KR, Brugnoli E, Gazal R, English NB, Williams DG (2005) Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size. Oecologia 144:618–627

    Article  PubMed  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Clevelands CC, Green PA, Holland EA, Karl DM, MA F, Porter JH, Townsend AR, Vörösmarty C (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Gao X, Zhao Z, Giorgi F (2002) Changes of extreme events in regional climate simulations over East Asia. Adv Atmos Sci 19:927–942

    Article  Google Scholar 

  • Gedroc JJ, McConnaughay KDM, Coleman JS (1996) Plasticity and root/shoot partitioning: optimal, ontogenetic, or both? Funct Ecol 10:44–50

    Article  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Climate 18:1326–1350

    Article  Google Scholar 

  • Gubanov IA (1996) Conspectus of the flora of outer Mongolia (vascular plants). Valang Publishers, Moscow, 136 p

    Google Scholar 

  • Güsewell S, Koerselman W, Verhoeven JTA (2003) Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol Appl 13:372–384

    Article  Google Scholar 

  • Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008) Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:301–310

    Article  PubMed  Google Scholar 

  • Hijmans RJ, Susan E, Cameron JL, Parra PG, Jones AJ (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hilbig W (1995) The vegetation of Mongolia. SPB Academic Publishing, Amsterdam, 258 p

    Google Scholar 

  • Hoekstra JM, Boucher TM, Ricketts TH, Carter R (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Article  Google Scholar 

  • Holst J, Liu C, Yao Z, Bruggemann N, Zheng X, Han X, Butterbach-Bahl K (2007) Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant Soil 296:209–226

    Article  CAS  Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    CAS  Google Scholar 

  • Huang J-Y, Zhu X-G, Yuan Z-Y, Song S-H, Li X, Li L-H (2008) Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant Soil 306:140–158

    Article  Google Scholar 

  • Jigjidsuren S, Johnson DA (2003) Forage plants in Mongolia. Admon Publishing, Ulaanbaatar

    Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Lathja K, Bloomer SH (1988) Factors affecting phosphate sorption and phosphate retention in a desert ecosystem. Soil Sci 146:160–167

    Article  Google Scholar 

  • Lauenroth WK, Sala OE (1992) Long-term forage production of north American shortgrass steppe. Ecol Appl 2:397

    Article  Google Scholar 

  • Lavrenko EM, Karamysheva ZV (1993) Steppes of the former soviet union and Mongolia. In: Coupland RT (ed) Natural Grasslands. Ecosystems of the world 8b. Elsevier, Amsterdam, pp 3–59

    Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Le Houerou HN, Bingham RL, Skerbak W (1988) Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. J Arid Environ 15:1–18

    Google Scholar 

  • Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195

    Article  Google Scholar 

  • Lü X-T, Han X-G (2009) Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant Soil. doi:10.1007/s11104-009-0078-y

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, 889 p

    Google Scholar 

  • Munkhtsetseg E, Kimuraa R, Wanga J, Shinoda M (2007) Pasture yield response to precipitation and high temperature in Mongolia. J Arid Environ 70:94–110

    Article  Google Scholar 

  • Niu S, Wu M, Han Y, **a J, Li L, Wan S (2008) Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytol 177:209–219

    CAS  PubMed  Google Scholar 

  • Niu S, Yang H, Zhang Z, Wu M, Lu Q, Li L, Han X, Wan S (2009) Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12:915–926

    Article  CAS  Google Scholar 

  • Noy-Meir I (1973) Desert ecosytems: environment and producers. Annu Rev Ecol Syst 4:25–41

    Article  Google Scholar 

  • Ogle K, Reynolds JF (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141:282–294

    Article  PubMed  Google Scholar 

  • Pan Q, Bai YF, Han XG, Yang J-C (2005) Effects of Nitrogen additions on a Leymus chinensis population in typical steppe of Inner Mongolia. Acta Phytoecologica Sinica 29:311–317

    CAS  Google Scholar 

  • Patrick LD, Ogle K, Bell CW, JZA K, Tissue D (2009) Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamics. Glob Chang Biol 15:1214–1229

    Article  Google Scholar 

  • Peck JR, Yearsley JM, Waxman D (1998) Explaining the geographic distributions of sexual and asexual populations. Nature 391:889–892

    Article  CAS  Google Scholar 

  • Powell KB, Vincent RB, Depuit EJ, Smith JE, Parady FE (1990) Role of irrigation and fertilization in revegetation of cold desert mined lands. J Range Manage 43:449–455

    Article  Google Scholar 

  • Retzer V, Nadrowski K, Miehe G (2006) Variation of precipitation and its effect on phytomass production and consumption by livestock and large wild herbivores along an altitudinal gradient during a drought, South Gobi, Mongolia. J Arid Environ 66:135

    Article  Google Scholar 

  • Reynolds JF, Kemp PR, Ogle K, Fernandez RJ (2004) Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141:194–210

    Article  PubMed  Google Scholar 

  • Ronnenberg K, Wesche K, Hensen I (2008) Germination ecology of Central Asian Stipa spp: differences among species, seed provenances, and the importance of field studies. Plant Ecol 196:269–280

    Article  Google Scholar 

  • Schlesinger WH, Peterjohn WT (1991) Processes controlling ammonia volatilization from Chihuahuan desert soils. Soil Biol Biochem 23:637–642

    Article  Google Scholar 

  • Slemnev NN, Sanjid D, Khongor T, Tsooj S (2004) The features of desertified steppes development in Mongolia at the gradient of ecotopes’ moistoning. Arid Ecosystems 10:172–182

    Google Scholar 

  • Song M, Dong M, Jiang G (2002) Importance of clonal plants and plant species diversity in the Northeast China Transect. Ecol Res 17:705–716

    Article  Google Scholar 

  • SPSSInc. (2003) SPSS for Windows 12.0G. SPSS Inc., Chicago.

  • Stumpp M, Wesche K, Retzer V, Miehe G (2005) Impact of grazing livestock and distance from water points on soil fertility in southern Mongolia. Mt Res Dev 25:245–252

    Article  Google Scholar 

  • von Wehrden H, Zimmermann H, Hanspach J, Ronnenberg K, Wesche K (2009) Predictive map** of plant species and communities by using GIS and Landsat data in a southern Mongolian mountain range. Folia Geobot 44:211–225

    Article  Google Scholar 

  • Walvoord MA, Phillips FM, Stonestrom DA, Evans RD, Hartsough PC, Newman BD, Striegl RG (2003) A reservoir of nitrate beneath desert soils. Science 302:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Zhao NX, Gao YB, Lin F, Ren AZ, Ruan WB, Chen L (2006) RAPD analysis of genetic diversity and population genetic structure of Stipa krylovii Reshov. in Inner Mongolia steppe. Russ J Genet 42:468–475

    Article  CAS  Google Scholar 

  • Wesche K, Ronnenberg K (2004) Phytosociological affinities and habitat preferences of Juniperus sabina L. and Artemisia santolinifolia Turcz. ex Bess. in mountain sites of the south-eastern Gobi Altay, Mongolia. Feddes Repertorium 115:585–600

    Article  Google Scholar 

  • Wesche K, Ronnenberg K (2010) Effects of NPK fertilisation in arid southern Mongolian desert steppes. Plant Ecol 207:93–105

    Article  Google Scholar 

  • Wesche K, Miehe S, Miehe G (2005) Plant communities of the Gobi Gurvan Sayhan National Park (South Gobi Aimag, Mongolia). Candollea 60:149–205

    Google Scholar 

  • Wesche K, Nadrowski K, Retzer V (2007) Habitat engineering under dry conditions: the impact of pikas (Ochotona pallasi) on southern Mongolian mountain steppes. J Veg Sci 18:665–674

    Article  Google Scholar 

  • Wesche K, Ronnenberg K, Retzer V, Miehe G (2010) Effects of large herbivore exclusion on southern Mongolian desert steppes. Acta Oecologica 36:234–241

    Article  Google Scholar 

  • Wu Z-Y, Raven PH (2006) Poaceae. Science Press, Bei**g

    Google Scholar 

  • **ao CW, Janssens IA, Liu P, Zhou ZY, Sun OJ (2007) Irrigation and enhanced soil carbon input effects on below-ground carbon cycling in semiarid temperate grasslands. New Phytol 174:835–846

    Article  CAS  PubMed  Google Scholar 

  • **e YZ, Wittig R (2004) The impact of grazing intensity on soil characteristics of Stipa grandis and Stipa bungeana steppe in northern China (autonomous region of Ningxia). Acta Oecologica-International Journal of Ecology 25:197–204

    Article  Google Scholar 

  • Yong-Zhong S, Yu-Lin L, Jian-Yuan C, Wen-Zhi Z (2005) Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. CATENA 59:267

    Article  Google Scholar 

  • Zhao N-X, Gao Y-B, Wang J-L, Ren A-Z (2006) Genetic diversity and population differentiation of the dominant species Stipa krylovii in the Inner Mongolia steppe. Biochem Genet 44:504–517

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Hass and J. Treiber for their assistance with the lab work and B. Turuu and C. Bläß for their help harvesting the biomass. H. von Wehrden and J. Hanspach gave advice on statistical questions and H. Brett and D. McCluskey corrected our English. B. Oyuna and U. Tuvshin organized permissions for field work and for the export of samples. The Gobi Gurvan Saykhan National Park granted research permission within the protected area. The DFG (German Science Foundation) and DAAD (German Academic Exchange Service) provided funding for the project. This is contribution number 298 in the series “Results of the Mongolian-German Biological Expedition since 1962”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Ronnenberg.

Additional information

Responsible Editor: Klaus Butterbach-Bahl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table A1

Split-plot ANOVA of the biomass data. Species are nested within year and within the block factor. Data are rank transformed (DOC 52 kb)

Table A2

Split-Plot-ANOVA of inflorescence numbers. Data are rank transformed and species nested within the block factor. (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronnenberg, K., Wesche, K. Effects of fertilization and irrigation on productivity, plant nutrient contents and soil nutrients in southern Mongolia. Plant Soil 340, 239–251 (2011). https://doi.org/10.1007/s11104-010-0409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0409-z

Keywords

Navigation