Log in

Uptake, localisation and physiological changes in response to copper excess in Erica andevalensis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Copper uptake, localisation and biochemical and physiological traits were studied in hydroponically-grown Erica andevalensis plants at different increasing concentrations of Cu (1 µM, 50 µM, 100 µM, 250 µM, and 500 µM). Increasing Cu concentration in the nutrient medium led to a significative reduction in plant growth rate, an increase in root Cu concentration, leaf photosynthetic pigments and root peroxidase activity. Copper accumulation followed the pattern roots>stems>leaves, a typical behaviour of metal-excluders. Copper treatments led to significant changes in the free amino acid composition in shoots and roots and the concentration of polyamines in shoots. Analysis by scanning electron microscopy coupled with elemental X-ray analysis (SEM–EDX) showed a partial restriction of upward Cu transport by root vascular tissues. In leaf tissues, Cu mostly accumulated in the abaxial epidermis, suggesting a mechanism of compartmentalization to restrict mesophyll accumulation. The toxic effects of excess Cu were avoided to a certain extent by root immobilization, tissue compartmentalization, synthesis of complexing amino acids and induction of enzymes to prevent oxidative damage are among mechanisms adopted by Erica andevalensis to thrive in acidic-metalliferous soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu MM, Tavares MT, Batista MJ (2007) Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugal. J Geochem Exp 96:210–222

    Article  Google Scholar 

  • Asensi A, Bennett F, Brooks R, Robinson B, Stewart R (1999) Copper uptake studies on Erica. andevalensis, a metal-tolerant plant from Southwestern Spain. Commun Soil Sci Plant Anal 30:1615–1624

    Article  CAS  Google Scholar 

  • Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009) Proline and glycine betaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 166:146–156

    Article  CAS  PubMed  Google Scholar 

  • Baszyski T, Krdl M, Krupa Z, Ruszowska M, Wojclesk AV, Wolinska D (1982) Photosynthetic apparatus of spinach exposed to excess copper. Z Pflanzenphysiol 108:385–395

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cabezudo B, Rivera J (1980) Notas taxonómicas y corológicas sobre la Flora de Andalucía occidental, 2: Erica andevalensis Cabezudo & Rivera sp. nov. Lagascalia 9:223–226

    Google Scholar 

  • Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidase in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876

    Article  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (2003) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  Google Scholar 

  • De Vos CHR, Schat H, de Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528

    Article  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat A (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Fischer RA, Turner NC (1978) Plant productivity in the arid and semiarid zones. Annu Rev Plant Phyiol 29:277–317

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxyfication and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Heinrikson RL, Meredith SC (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenyliso-thiocyanate. Anal Biochem 136:65–74

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical Communication No. 22 (2nd revised edition). Commonwealth Bureau of Horticulture and Plantation Crops, East Malling, CAB, Farnham Royal, England

  • Irtelli B, Petrucci WA, Navari-Izzo F (2009) Nicotianamide and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess. J Exp Bot 60:260–277

    Google Scholar 

  • Jahangir M, Abdel-Farid IB, Choi YH, Verpoorte R (2008) Metal ion-inducing metabolite accumulation in Brassica rapa. J Plant Physiol 165:1429–1437

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernández JA, de1 Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Khatun S, Babar Ali M, Hahna EJ, Paeka K-Y (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64:279–285

    Article  CAS  Google Scholar 

  • Kruckeberg AL, Wu L (1992) Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines. Ecotox Environ Safe 23:307–319

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods in Enzymology. Academic

  • Liu D, Kottke I (2004) Subcellular localization of copper in the root cells of Allium sativum by electron energy loss spectroscopy (EELS). Bioresource Technol 94:153–158

    Article  CAS  Google Scholar 

  • Macfarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey Mangrove, Avicennia marina (Forsk.) Vierh. Marine Poll Bull 42:233–240

    Article  CAS  Google Scholar 

  • Marcé M, Brown DS, Capell T, Figueras X, Tiburcio AF (1995) Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: application to plant and animal tissues. J Chromat B 666:329–335

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Meharg AA (2005) Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant Soil 274:163–174

    Article  CAS  Google Scholar 

  • Mingorance MD, Pérez-Vázquez L, Lachica M (1993) Microwave digestion method for the atomic determination of some elements in biological samples. J Anal Atom Spectrom 8:853–858

    Article  CAS  Google Scholar 

  • Monni S, Salemaa M, White C, Tuittila E, Huopalainen M (2000) Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu–Ni smelter, in southwest Finland. Environ Pollut 109:211–219

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, zur Nieden U, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentration? J Plant Physiol 146:704–717

    CAS  Google Scholar 

  • Ouzounidou G, Čiamporová M, Moustakas M, Karataglis S (1995) Responses of maize (Zea mays L.) plants to copper stress. I. Growth, mineral content and ultrastructure of roots. Environ Exp Bot 35:167–176

    Article  CAS  Google Scholar 

  • Panou-Filotheou H, Bosabalidis AM (2004) Root structural aspects associated with copper toxicity in oregano (Origanum vulgare subsp. hirtum). Plant Science 166:1497–1504

    Article  CAS  Google Scholar 

  • Poschenrieder C, Bech J, Llugany M, Pace A, Fené E, Barceló J (2001) Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremediation. Plant Soil 230:247–256

    Article  CAS  Google Scholar 

  • Quental L, Bourguignon A, Sousa AJ, Batista Brito MG, Tavares T, Abreu MM, Vairinho M, Cottard F (2002) MINEO Southern Europe environment test site, Contamination impact map** and modelling—Final Report. IST-1999-10337 http://www.brgm.fr/mineo

  • Robson AD, Reuter DJ (1981) Diagnosis of copper deficiency and toxiciy. In: Loneragan JF, Robson AD, Graham RD (eds) Copper in soil and plants. Academic, London, pp 287–312

    Google Scholar 

  • Rodríguez N, Amils R, Jiménez-Ballesta R, Rufo L, De la Fuente V (2007) Heavy metal content in Erica andevalensis: an endemic plant from the extreme acidic environment of Tinto River and its soils. Arid Land Res Manag 21:51–65

    Article  Google Scholar 

  • Rossini Oliva S, Bargagli R, Monaci F,Valdés B, Mingorance MD, Leidi EO (2009a) Stress responses of Erica andevalensis Cabezudo & Rivera plants induced by polluted water from Tinto River (SW Spain). Ecotoxicology doi:10.1007/s10646-009-0366-6

  • Rossini Oliva S, Valdés B, Leidi EO (2009b) Accumulation and in vivo tissue distribution of pollutant elements in Erica andevalensis. Sci Total Environ 407:1929–1936

    Article  CAS  PubMed  Google Scholar 

  • Salemaa M, Monni S (2003) Copper resistance of the evergreen dwarf shrub Arctostaphylos uva-ursi: an experimental exposure. Environ Pollut 126:435–443

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Snowden RED, Wheeler BD (1995) Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates and Fe tolerance. New Phytol 131:503–520

    Article  CAS  Google Scholar 

  • Soldevilla M, Maranón T, Cabrera F (1992) Heavy metal content in soil and plants from a pyrite mining area in southwest Spain. Comm Soil Plant Anal 23:1301–1319

    Article  CAS  Google Scholar 

  • Turnau K, Henriques FS, Anielska T, Renker C, Buscot F (2007) Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environ Exp Bot 61:117–123

    Article  CAS  Google Scholar 

  • Van Asshe F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83:702–708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Spanish Ministry of Science and Education (MEC) (CGL2006-1418 and José Castillejo Program) and Ramón Areces Foundation. The authors thank Manlio Colella and Sergio Sorbo from CISME (Naples, Italy), for their technical assistance in SEM–EDX analysis and the techniques from the Greenhouse of Seville University for their technical assistance in plant cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rossini Oliva.

Additional information

Responsible Editor: Juan Barcelo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 3 bis

Composition of the free amino acid pool in shoots and roots of Erica andevalensis plants grown in nutrient solutions containing different concentrations of Cu (in µmoles g dry weight−1). In brackets, relative values in relation to the contents in control plants (1 µM Cu). (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossini Oliva, S., Mingorance, M.D., Valdés, B. et al. Uptake, localisation and physiological changes in response to copper excess in Erica andevalensis . Plant Soil 328, 411–420 (2010). https://doi.org/10.1007/s11104-009-0121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0121-z

Keywords

Navigation