Log in

Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Salt stress is a major environmental factor which adversely affects the crop yield and quality. However, adequate regulation of mineral nutrients may ameliorate the deleterious effects of salts and help to sustain crop productivity under salt stress. Salt-sensitive (SPF 213) and salt-tolerant (HSF 240) sugarcane genotypes were grown in gravel at 0 and 100 mM NaCl by supplying 0, 1.4 mM, 2.1 mM and 2.8 mM of Si as calcium silicate. Results revealed that plants treated with NaCl alone showed a significant (P ≤ 0.05) reduction in dry matter production, K+ concentration, cane yield and juice quality in both genotypes but the magnitude of reduction was relatively more in salt-sensitive genotype than salt-tolerant. Addition of Si significantly (P ≤ 0.05) reduced the uptake and translocation of Na+ but increased K+ concentrations particularly in shoots of both sugarcane genotypes. Cane yield and yield attributes were significantly (P ≤ 0.05) higher where Si was added. Juice quality characteristics were significantly (P ≤ 0.05) improved in salt-sensitive and salt-tolerant sugarcane genotypes with the application of Si. The results suggested that added Si interacted with Na+, reduced its uptake and transport to shoots and consequently improved cane yield and juice quality in salt-sensitive and salt-tolerant sugarcane genotypes under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad R, Zaheer S, Ismail S (1992) Role of silicon in salt tolerance of wheat (Triticum aestivum L). Plant Sci 85:43–50. doi:10.1016/0168-9452(92)90092-Z

    Article  CAS  Google Scholar 

  • Akhtar SA, Wahid A, Akram M, Rasul E (2001) Some growth, photosynthetic and anatomical attributes of sugarcane genotypes under NaCl salinity. Int J Agric Biol 4:439–443

    Google Scholar 

  • Akram M, Hussain M, Akhtar S, Rasul E (2002) Impact of NaCl salinity on yield components of some wheat accessions/varieties. Int J Agric Biol 1:156–158

    Google Scholar 

  • Al-Aghabary K, Zhu ZJ, Shi QH (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101–2115. doi:10.1081/PLN-200034641

    Article  CAS  Google Scholar 

  • Anonymous (1970) Sugarcane laboratory manual for Queensland sugar mills, 9th edn. Bureau of Sugar Experimental Station, Queensland

    Google Scholar 

  • Asch F, Dingkuhn M, Wittstock C, Doerffling K (1999) Sodium and potassium uptake of rice panicles as affected by salinity and season in relation to yield and yield components. Plant Soil 207:133–145. doi:10.1023/A:1026407913216

    Article  Google Scholar 

  • Ashraf M, Rahmatullah KS, Tahir MA, Sarwar A, Ali L (2007) Differential salt tolerance of sugarcane genotypes. Pak J Agri Sci 44:85–89

    Google Scholar 

  • Benlloch M, Ojeda MA, Ramos J, Rodriguez-Navarro A (1994) Salt sensitivity and low discrimination between potassium and sodium in bean plants. Plant Soil 166:117–123. doi:10.1007/BF02185488

    Article  CAS  Google Scholar 

  • Bradbury M, Ahmad R (1990) The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant Soil 125:71–74. doi:10.1007/BF00010745

    Article  CAS  Google Scholar 

  • Cachorro P, Ortiz A, Cerda A (1994) Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant Soil 159:205–212. doi:10.1007/BF00009282

    Article  CAS  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530. doi:10.1002/jpln.200420485

    Article  CAS  Google Scholar 

  • Elliot CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119. doi:10.1021/jf00006a024

    Article  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol 50:641–664. doi:10.1146/annurev.arplant.50.1.641

    Article  CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley & Sons, New York, USA

    Google Scholar 

  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979. doi:10.1111/j.1365-3040.2006.01572.x

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Pilbeam DJ (2007) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290:103–114. doi:10.1007/s11104-006-9137-9

    Article  CAS  Google Scholar 

  • Johnson CM, Strout RR, Broyer TC, Carlton AB (1957) Comparative chlorine requirements of different species. Plant Soil 8:327–353. doi:10.1007/BF01666323

    Article  Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224. doi:10.1023/A:1004526604913

    Article  CAS  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164. doi:10.1078/0176-1617-01065

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Wong JWC, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483. doi:10.1016/j.chemosphere.2004.09.034

    Article  CAS  PubMed  Google Scholar 

  • Liang YC, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon mediated alleviation of abiotic stress in higher plants: a review. Environ Pollut 147:422–428. doi:10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Lingle SE, Wiegand CL (1997) Soil salinity and sugarcane juice quality. Field Crops Res 54:259–268. doi:10.1016/S0378-4290(97)00058-0

    Article  Google Scholar 

  • Ma JF, Takahashi E (1993) Interaction between calcium and silicon in water cultured rice plants. Plant Soil 148:389–398. doi:10.1007/BF02185390

    Article  Google Scholar 

  • Ma JF, Tamal K, Yamaji N, Mitani N, Konishi S, Katuhara M, Ishiguro M, Yano M (2006) A Si transporter in rice. Nature 440:688–691. doi:10.1038/nature04590

    Article  CAS  PubMed  Google Scholar 

  • Maas EV, Grieve CM (1990) Spike and leaf development in salt stressed wheat. Crop Sci 30:1309–1313

    Article  Google Scholar 

  • Mahar AR, Hollington PA, Virk DS, Witcombe JR (2003) Selection for early heading and salt tolerance in bread wheat. Cereal Res Commun 31:81–88

    Google Scholar 

  • Matoh T, Kairusmee P, Takahashi E (1986) Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:259–304

    Google Scholar 

  • Munns R, James RA (2003) Screening methods for salt tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218. doi:10.1023/A:1024553303144

    Article  CAS  Google Scholar 

  • Neumann D, Nieden UZ (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692. doi:10.1016/S0031-9422(00)00472-6

    Article  CAS  PubMed  Google Scholar 

  • Perez-Alfocea F, Balibrea ME, Santa Cruz A, Estan MT (1996) Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil 180:251–257. doi:10.1007/BF00015308

    Article  CAS  Google Scholar 

  • Raven JA (2003) Cycling silicon—the role of accumulation in plants. New Phytol 158:419–430. doi:10.1046/j.1469-8137.2003.00778.x

    Article  Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon. The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272. doi:10.1016/S1369-5266(03)00041-4

    Article  CAS  PubMed  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855. doi:10.1016/j.jplph.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  • Russell DF, Eisenmith SP (1983) MSTAT-C. Crop Soil Sci. Dept. Machigan State Univ, USA

    Google Scholar 

  • Savant NK, Korndorfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1903. doi:10.1080/01904169909365761

    Article  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:76–119

    Google Scholar 

  • Shu LZ, Liu YH (2001) Effect of silicon on growth of maize seedlings under salt stress. Agro-environmental Prot 20:38–40

    Google Scholar 

  • Tazuke A, Wada T (2002) Activities of sucrose catalyzing enzymes of cucumber fruit as affected by NaCl addition to nutrient solution. Environ Contr Biol 40:321–325

    Google Scholar 

  • Wahid A (2004) Analysis of toxic and osmotic effects of sodium chloride on leaf growth and economic yield of sugarcane. Bot Bull Acad Sin 45:133–141

    Google Scholar 

  • Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278–285. doi:10.1111/j.1747-0765.2007.00135.x

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers JF (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565. doi:10.1046/j.1365-3040.1999.00418.x

    Article  CAS  Google Scholar 

  • Yoshida S, Forno DO, Cock JL, Gomez KA (1976) Laboratory manual for physiological studies of rice. IRRI, Manila, Philippines

    Google Scholar 

  • Zhu JK, Wei GQ, Li J, Qian QQ, YU JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by Higher Education Commission of Pakistan through Indigenous Ph.D. Scholarship Scheme. The authors are grateful to Director, Sugarcane Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan for providing seed of sugarcane genotypes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashraf.

Additional information

Responsible Editor: Yong Chao Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, M., Rahmatullah, Afzal, M. et al. Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.). Plant Soil 326, 381–391 (2010). https://doi.org/10.1007/s11104-009-0019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0019-9

Keywords

Navigation