Log in

Soil N and C trace gas fluxes and microbial soil N turnover in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

During two intensive field campaigns in summer and autumn 2004 nitrogen (N2O, NO/NO2) and carbon (CO2, CH4) trace gas exchange between soil and the atmosphere was measured in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. The climate can be described as continental temperate. Fluxes were measured with a fully automatic measuring system allowing for high temporal resolution. Mean N2O emission rates were 1.5 µg N m−2 h−1 in summer and 3.4 µg N m−2 h−1 in autumn, respectively. Also mean NO emission rates were higher in autumn (8.4 µg N m−2 h−1) as compared to summer (6.0 µg N m−2 h−1). However, as NO2 deposition rates continuously exceeded NO emission rates (−9.7 µg N m−2 h−1 in summer and −18.3 µg N m−2 h−1 in autumn), the forest soil always acted as a net NO x sink. The mean value of CO2 fluxes showed only little seasonal differences between summer (81.1 mg C m−2 h−1) and autumn (74.2 mg C m−2 h−1) measurements, likewise CH4uptake (summer: −52.6 µg C m−2 h−1; autumn: −56.5 µg C m−2 h−1). In addition, the microbial soil processes net/gross N mineralization, net/gross nitrification and heterotrophic soil respiration as well as inorganic soil nitrogen concentrations and N2O/CH4 soil air concentrations in different soil depths were determined. The respiratory quotient (ΔCO2 resp ΔO −12 resp ) for the uppermost mineral soil, which is needed for the calculation of gross nitrification via the Barometric Process Separation (BaPS) technique, was 0.8978 ± 0.008. The mean value of gross nitrification rates showed only little seasonal differences between summer (0.99 µg N kg−1 SDW  d−1) and autumn measurements (0.89 µg N kg−1 SDW  d−1). Gross rates of N mineralization were highest in the organic layer (20.1–137.9 µg N kg−1 SDW  d−1) and significantly lower in the uppermost mineral layer (1.3–2.9 µg N kg−1 SDW  d−1). Only for the organic layer seasonality in gross N mineralization rates could be demonstrated, with highest mean values in autumn, most likely caused by fresh litter decomposition. Gross mineralization rates of the organic layer were positively correlated with N2O emissions and negatively correlated with CH4 uptake, whereas soil CO2 emissions were positively correlated with heterotrophic respiration in the uppermost mineral soil layer. The most important abiotic factor influencing C and N trace gas fluxes was soil moisture, while the influence of soil temperature on trace gas exchange rates was high only in autumn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert M, Bureau F, Vinceslas-Akpa M (2005) Sources of spatial and temporal variability of inorganic nitrogen in pure and mixed deciduous temperate forests. Soil Biol Biochem 37:67–79

    Article  CAS  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann Forest Sci 59:233–253

    Article  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NO x . Atmos. Environ 34:2063–2101

    Article  CAS  Google Scholar 

  • Barraclough D, Puri G (1995) The use of 15N pool dilution and enrichment to separate the heterotrophic and autotrophic pathways of nitrification. Soil Biol Biochem 27:17–22

    Article  CAS  Google Scholar 

  • Bateman EJ, Baggs EM (2005) Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertility Soils 41:379–388

    Article  CAS  Google Scholar 

  • Baumgärtner M, Koschorreck M, Conrad R (1996) Oxidative consumption of nitric oxide by heterotrophic bacteria in soil. FEMS Microbiol Ecol 19:165–170

    Article  Google Scholar 

  • Beier N, Schneewind R (1991) Chemical reactions of gases in tubes of probing systems and their influence on measured concentrations. Ann Geophys 9:703–707

    Google Scholar 

  • Binkley D, Giardina C (1998) Why do tree species affect soils? The Warp and Woof of tree-soil interactions. Biogeochem 42:89–106

    Article  Google Scholar 

  • Born M, Dörr H, Levin I (1990) Methane consumption in aerated soils of the temperate zone. Tellus 42B:2–8

    ADS  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  CAS  PubMed  Google Scholar 

  • Borken W, Brumme R, Xu YJ (2000) Effects of prolonged soil drought on CH4 oxidation in a temperate spruce forest. J Geophys Res 105:7079–7088

    Article  CAS  ADS  Google Scholar 

  • Bouwman AF (1996) Direct emission of nitrous oxide from agricultural soils. Nutr Cycling Agroecosyst 46:53–70

    Article  CAS  Google Scholar 

  • Bouwman AF (1998) Environmental science – nitrogen oxides and tropical agriculture. Nature 392:866–867

    Article  CAS  ADS  Google Scholar 

  • Bowden RD, Newkirk KM, Rullo GM (1998) Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol Biochem 30:1591–1597

    Article  CAS  Google Scholar 

  • Breuer L, Papen H, Butterbach-Bahl K (2000) N2O emission from tropical forest soils of Australia. JGeophys Res 105:26353–26367

    Article  CAS  ADS  Google Scholar 

  • Breuer L, Kiese R, Butterbach-Bahl K (2002) Temperature and moisture effects on nitrification rates in tropical rain-forest soils. Soil Sci Soc Am J 66:834–844

    Article  CAS  Google Scholar 

  • Brüggemann N, Rosenkranz P, Papen H, Pilegaard K, Butterbach-Bahl K (2005) Pure stands of temperate forest tree species modify soil respiration and N turnover. Biogeosci Discuss 2:303–331, SRef-ID: 1810-6285/bgd/2005-2-303

    ADS  Google Scholar 

  • Brumme R, Beese F (1992) Effects of liming and nitrogen-fertilization on emission of CO2 and N2O from temperate forest soils. J Geophys Res 97:12851–12858

    CAS  ADS  Google Scholar 

  • Brumme R, Borken W (1999) Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem. Global Biogeochem Cycl 13:493–501

    Article  CAS  ADS  Google Scholar 

  • Brumme R, Borken W, Finke S (1999) Hierarchical control on nitrous oxide emission in forest ecosystems. Global Biogeochem Cycl 13:1137–1148

    Article  CAS  ADS  Google Scholar 

  • Butterbach-Bahl K, Gasche R, Breuer L, Papen H (1997) Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions. Nutr Cycl Agroecosyst 48:79–90

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Gasche R, Huber CH, Kreutzer K, Papen H (1998) Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmos Environ 32:559–564

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H (2002) Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant Soil 240: 77–90

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R (2004) Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Global Biogeochem Cycl 18, Art. No. GB3012

  • Castro MS, Steudler PA, Melillo JM, Chapman JW (1995) Factors controlling atmospheric methane consumption by temperate forest soils. Global Biochem Cycl 9:1–10

    Article  CAS  MATH  ADS  Google Scholar 

  • Christensen S, Degorska A, Prieme A (2001) Methane oxidation in Polish forest soils of contrasting atmospheric pollution. Atmos Environ 35:2795–2798

    Article  CAS  Google Scholar 

  • Conrad R (2002) Microbiological and biochemical background of production and consumption of NO and N2O in soil. In: Gasche R et al (eds) Trace gas exchange in forest ecosystems. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 3–33

    Google Scholar 

  • Crill PM, Martikainen PJ, Nykanen H, Silvola J (1994) Temperature and N-fertilization effects on methane oxidation in a drained peatland soil. Soil Biol Biochem 26:1331–1339

    Article  CAS  Google Scholar 

  • Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96:320–325

    ADS  Google Scholar 

  • Crutzen PJ (1995) Ozone in the troposphere. In: Sing HB (ed) Composition, chemistry and climate of the atmosphere. Van Nostrand Reinhold, New York, pp 249–393

    Google Scholar 

  • Davidson EA (1991) Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Roger JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes. Am. Soc. Microbiol, Washington DC pp 219–235

    Google Scholar 

  • Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosyst 48:37–50

    Article  CAS  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Kulmala DS, Phongpan S (2000) General model for N2O and N2 gas emissions from soils due to dentrification. Global Biogeochem Cycl 14:1045–1060

    Article  ADS  Google Scholar 

  • Dilly O (2003) Regulation of the respiratory quotient of soil microbiota by availability of nutrients. FEMS Microbiol Ecol 43:375–381

    Article  CAS  PubMed  Google Scholar 

  • Dilly O (2004) Effects of glucose, cellulose, and humic acids on soil microbial eco-physiology. J Plant Nutr Soil Sci 167:261–266

    Article  CAS  Google Scholar 

  • Dobbie KE, Smith KA (2001) The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Europ J Soil Sci 52:667–673

    Article  CAS  Google Scholar 

  • Dörr H, Katruff L, Levin I (1993) Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26:697–713

    Article  Google Scholar 

  • Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 65:1009–1014

    PubMed  CAS  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley & Sons Ltd, Chichester, UK, pp 7–21

    Google Scholar 

  • Gasche R, Papen H (1999) A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. 2. NO and NO2 fluxes. J Geophys Res 104(D15):18505–18520

    Article  CAS  ADS  Google Scholar 

  • Goldman MB, Groffman PM, Pouyat RV, McDonell MJ, Pickett STA (1995) CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biol. Biochem. 27:281–286

    Article  CAS  Google Scholar 

  • Goossens A, De Visscher A, Boeckx P, Van Cleemput O (2001) Two-year field study on the emission of N2O from coarse and middle-textured Belgian soils with different land use. Nutr Cycl Agroecosys 60:23–34

    Google Scholar 

  • Granli T, Bøckmann OC (1994) Nitrous oxide from agriculture. Norw J Agric Sci 12:7–128

    Google Scholar 

  • Gregory JM, Mitchell JFB, Brady AJ (1997) Summer drought in Northern midlatitudes in a time-dependent CO2 climate experiment. J Climate 10:662–686

    Article  ADS  Google Scholar 

  • Gut A, Blatter A, Fahrni M, Lehmann BE, Neftel A, Staffelbach T (1998) A new membrane tube technique (METT) for continuous gas measurements in soils. Plant Soil 198:79–87

    Article  CAS  Google Scholar 

  • Gut A, Scheibe M, Rottenberger S, Rummel U, Welling M, Ammann C, Kirkham G A, Kuhn U, Meixner FX, Kesselmeier J, Lehmann BE, Schmid W, Müller E, Piedade MTF (2002) Exchange fluxes of NO2 and O3 at soil and leaf surfaces in an Amazonian rain forest. J Geophys Res 107, 8060, doi: 10.1029/2001JD000654

  • Hackl E, Bachmann G, Zechmeister-Boltenstern S (2004) Microbial nitrogen turnover in soils under different types of natural forest. Forest Ecol Manage 188:101–112

    Article  Google Scholar 

  • Hall SJ, Matson PA, Roth PM (1996) NO x emissions from soil: implications for air quality modeling in agricultural regions. Ann Rev Energy Environ 21:311–346

    Article  Google Scholar 

  • Hoffmann G (1991) VD LUFA A6141 Methodenbuch Band 1: Die Untersuchung von Böden. 4. Auflage, VDLUFA-Verlag, Darmstadt

    Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  ADS  Google Scholar 

  • Horváth L, Führer E, Lajtha K (2005) Nitric oxide and nitrous oxide emission from Hungarian forest soils; link with atmospheric N-deposition. Biogeosci Discuss 2:703–723, SRef-ID: 1810-6285/bgd/2005-2-703

    ADS  Google Scholar 

  • Ingwersen J, Butterbach-Bahl K, Gasche R, Richter O, Papen H (1999) Barometric process separation: new method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Sci Soc Am J 63:117–128

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: The Scientific Basis: Contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, New York. 944 pp

  • Kagotani Y, Hamabata E, Nakajima T (2001) Seasonal and spatial variations and the effects of clear-cutting in the methane absorption rates of a temperate forest soil. Nutr Cycling Agroecosyst 59:169–175

    Article  Google Scholar 

  • Kesik M, Ambus P, Baritz R, Brüggemann N, Butterbach-Bahl K, Damm M, Duyzer J, Horváth L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert G, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltenstern S (2005) Inventories of N2O and NO emissions from European forest soils. Biogeoscience 353–375, SRef-ID: 1726-4189/bg/2005-2-353

  • Kiese R, Butterbach-Bahl K (2002) N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biol Biochem 34:975–987

    Article  CAS  Google Scholar 

  • King GM (1997) Responses of atmospheric methane consumption by soils to global climate change. Global Change Biol 3:351–362

    Article  Google Scholar 

  • King GM, Schnell S (1998) Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Appl Environ Microbiol 64:253–257

    PubMed  CAS  Google Scholar 

  • Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci Soc Am Proc 18:33–34

    Article  CAS  Google Scholar 

  • Knowles R (2000) Nitrogen cycle. In: Lederberg J (ed) Encyclopedia of microbiology, vol 3, 2nd edn. Academic, San Diego, Calif, pp 379–391

  • Köble R, Seufert G (2001) Novel maps for forest tree species in Europe. In: Proceeding of the 8th European symposium on the physico-chemical behaviour of air pollutants: “A Changing Atmosphere!”, Torino, Italy

  • Machefert SE, Dise NB, Goulding KWT, Whitehead PG (2002) Nitrous oxide emission from a range of land uses across Europe. Hydrology Earth Sys Sci 6:325–337

    ADS  Google Scholar 

  • Merino A, Perez-Batallon P, Macias F (2004) Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biol Biochem 36:917–925

    Article  CAS  Google Scholar 

  • Müller C, Abbasi MK, Kammann C, Clough TJ, Sherlock RR, Stevens RJ, Jager HJ (2004) Soil respiratory quotient determined via barometric process separation combined with nitrogen-15 labeling. Soil Sci Soc Am J 68:1610–1615

    Article  Google Scholar 

  • Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718

    Article  CAS  ADS  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1983) Leaflitter production and soil organic matter dynamics along a nitrogen mineralization gradient in Southern Wisconsin (USA). Can J Forest Res 13:12–21

    Google Scholar 

  • O’Heix BC, Toth JA, Bodea T, Kiss G, Vig P, Jakucs P, Dizengremel P (1998) Information about studies on Hungarian forest ecosystems. Selected research-papers and future investigations of Sikfokut long-term project (1973–1998). Ann Sci Forest 55:613–618

    Google Scholar 

  • Papen H, Butterbach-Bahl K (1999) A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. 1. N2O emissions. J Geophys Res 104:18487–18503

    Article  CAS  ADS  Google Scholar 

  • Papen H, Daum M, Steinkamp R, Butterbach-Bahl K (2001) N2O and CH4-fluxes from soils of a N-limited and N-fertilized spruce forest ecosystem of the temperate zone. J Appl Bot 75:159–163

    Google Scholar 

  • Pastor J, Aber JD, Lovett GM (1984) Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island. Wiscons Ecol 65:256–268

    CAS  Google Scholar 

  • Prather M, Drewent D, Enhalt P, Fraser E, Sanhueza E, Zhou X (1995) Other trace gases and atmospheric chemistry. In: Houghton J et al (ed) Climate change (1994). Cambridge Univ. Press, Cambridge pp 77–126

    Google Scholar 

  • Priha O, Grayston SJ, Pennanen T., Smolander A (1999) Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil. FEMS Microbiol Ecol 30:187–199

    Article  PubMed  CAS  Google Scholar 

  • Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochem 48:71–90

    Article  CAS  Google Scholar 

  • Reay DS, Nedwell DB (2004) Methane oxidation in temperate soils: effects of inorganic N. Soil Biol Biochem 36:2059–2065

    Article  CAS  Google Scholar 

  • Reay DS, Nedwell DB, McNamara N, Ineson P (2005) Effect of tree species on methane and ammonium oxidation capacity in forest soils. Soil Biol Biochem 37:719–730

    Article  CAS  Google Scholar 

  • Remde A, Ludwig J, Meixner FX, Conrad R (1993) A study to explain the emission of nitric oxide from a marsh soil. J Atmos Chem 17:249–275

    Article  CAS  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biol 8:851–866

    Article  Google Scholar 

  • Richter J (1987) The soil as a reactor: modelling processes in the soil. Catena Verlag Cremlingen, Germany

    Google Scholar 

  • Rosenkranz P, Brüggemann N, Papen H, Xu Z, Seufert G, Butterbach-Bahl K (2006) N2O, NO and CH4 exchange, and microbial N turnover over a Mediterranean pine forest soil. Biogeoscience 3:121–133

    Article  CAS  Google Scholar 

  • Rowell DP (2005) A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Climate Dyn 25:837–849

    Article  ADS  Google Scholar 

  • Scheffer F, Schachtschabel P (1989) Lehrbuch der Bodenkunde. 12th edn. Ferdinand Enke Verlag, Stuttgart

    Google Scholar 

  • Schiller CL, Hastie DR (1996) Nitrous oxide and methane fluxes from perturbed and unperturbed boreal forest sites in northern Ontario. J Geophys Res 101:22767–22774

    Article  CAS  ADS  Google Scholar 

  • Schindlbacher A, Zechmeister-Boltenstern S, Butterbach-Bahl K (2004) Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J Geophys Res 109, doi: 10.1029/2004JD004590

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochem 41:23–51

    Article  CAS  Google Scholar 

  • Simojoki A, Jaakkola A (2000) Effect of nitrogen fertilization, crop** and irrigation on soil air composition and nitrous oxide emission in a loamy clay. Eur J Soil Sci 51:413–424

    Article  Google Scholar 

  • Skiba U, Fowler D, Smith KA (1994) Emissions of NO and N2O from soils. Environ Mon Assess 31:153–158

    Article  CAS  Google Scholar 

  • Smith KA, Robertson GP, Melillo JM (1994) Exchange of trace gases between the terrestrial biosphere and the atmosphere in the mid-latitudes. In: Prinn RG (ed) Global atmospheric-biospheric chemistry. Plenum Press, New York, pp 179–203

    Google Scholar 

  • Smith KA, Thomson PE, Clayton H, McTaggart IP, Conen F (1998) Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos Environ 32:3301–3309

    Article  CAS  Google Scholar 

  • Steinkamp R, Butterbach-Bahl K, Papen H (2001) Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biol Biochem 33:145–153

    Article  CAS  Google Scholar 

  • Teepe R, Brumme R, Beese F (2000) Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land. Soil Biol Biochem 32:1807–1810

    Article  CAS  Google Scholar 

  • Tietema A, Bouten W, Wartenbergh PE (1991) Nitous oxide dynamics in an oak-beech forest ecosystem in the Netherlands. Forest Ecol Manage 44:53–61

    Article  Google Scholar 

  • Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD (2004) Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. For Ecol Manage 196:129–142

    Article  Google Scholar 

  • Verchot LV, Holmes Z, Mulon L, Groffman PM, Lovett GM (2001) Gross vs net rates of N mineralization and nitrification as indicators of functional differences between forest types. Soil Biol Biochem 33:1889–1901

    Article  CAS  Google Scholar 

  • Vervaet H, Boeckx P, Boko AMC, Van Cleemput O, Hofman G (2004) The role of gross and net N transformation processes and NH +4 and NO -3 immobilization in controlling the mineral N pool of a temperate mixed deciduous forest soil. Plant Soil 264:349–357

    Article  CAS  Google Scholar 

  • Vor T, Dyckmans J, Loftfield N, Beese F, Flessa H (2003) Aeration effects on CO2, N2O, and CH4 emission and leachate composition of a forest soil. J Plant Nutr Soil Sci 166:39–45

    Article  CAS  Google Scholar 

  • Wang ZP, Ineson P (2003) Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biol. Biochem 35:427–433

    Article  CAS  Google Scholar 

  • Wetherald RT, Manabe S (1999) Detectability of summer dryness caused by greenhouse warming. Climatic Change 43:495–511

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (1996) Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol Biochem 28:1271–1281

    Article  CAS  Google Scholar 

  • Williams EJ, Fehsenfeld FC (1991) Measurement of soil-nitrogen oxide emissions at 3 north-American ecosystems. J Geophys Res 96:1033–1042

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Rainer Gasche, Michael Dannenmann and Christian Werner for scientific advice and expert technical assistance. Furthermore, we thank Sönke Wienholdt and Philipp Haas for their perfect support during the field campaigns. The work was funded by the European Commission in the NOFRETETE project (EVK2-CT2001-00106) of the fifth framework program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Butterbach-Bahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenkranz, P., Brüggemann, N., Papen, H. et al. Soil N and C trace gas fluxes and microbial soil N turnover in a sessile oak (Quercus petraea (Matt.) Liebl.) forest in Hungary. Plant Soil 286, 301–322 (2006). https://doi.org/10.1007/s11104-006-9045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9045-z

Keywords

Navigation