Log in

A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The bread wheat cultivar Shanrong No.3 (SR3) is a salinity tolerant derivative of an asymmetric somatic hybrid between cultivar **an 177 (JN177) and tall wheatgrass (Thinopyrum ponticum). To reveal some of the mechanisms underlying its elevated abiotic stress tolerance, both SR3 and JN177 were exposed to iso-osmotic NaCl and PEG stress, and the resulting gene expression was analysed using a customized microarray. Some genes associated with stress response proved to be more highly expressed in SR3 than in JN177 in non-stressed conditions. Its unsaturated fatty acid and flavonoid synthesis ability was also enhanced, and its pentose phosphate metabolism was more active than in JN177. These alterations in part accounted for the observed shift in the homeostasis related to reactive oxygen species (ROS). The specific down-regulation of certain ion transporters after a 0.5 h exposure to 340 mM NaCl demonstrated that Na+ uptake occurred rapidly, so that the early phase of salinity stress imposes more than simply an osmotic stress. We discussed the possible effect of the introgression of new genetic materials in wheat genome on stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279

    Article  PubMed  Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Chen SY, **a GM (2003) Heredity of chloroplast and nuclear genomes of asymmetric somatic hybrid lines between wheat and couch grass. ACTA Bot Sin 46(1):110–115

    Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant Cell Environ 33:648–654

    Article  PubMed  CAS  Google Scholar 

  • Fujibe T, Saji H, Watahiki MK, Yamamoto KT (2006) Overexpression of the RADICAL-INDUCED CELL DEATH1 (RCD1) gene of Arabidopsis causes weak rcd1 phenotype with compromised oxidative-stress responses. Biosci Biotechnol Biochem 70:1827–1831

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Liu SW, Sun Q, **a GM (2010) High frequency of HMW-GS sequence variation through somatic hybridization between Agropyron elongatum and common wheat. Planta 231:245–250

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Ma X, Wang Q, Gao Y, Xue Y, Niu X, Yu G, Liu Y (2008) Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). Plant Mol Biol 68:451–463

    Article  PubMed  CAS  Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim C-S, Shi W, Zhu J-K (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1677

    Article  PubMed  CAS  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu J-K (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:18816–18821

    Article  PubMed  CAS  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048

    Article  PubMed  CAS  Google Scholar 

  • Li C, Lv J, Zhao X, Ai X, Zhu X, Wang M, Zhao S, **a G (2010) TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. Plant Physiol 154:211–221

    Article  PubMed  CAS  Google Scholar 

  • Liu SW, Zhao SY, Chen FG, **a GM (2007) Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum. MBC Evol Biol 7:76–83

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi M, Kav NNV, Deyholos MK (2007) Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant Cell Environ 30(5):630–645

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Meijer HJ (2001) Osmotic stress activates distinct lipid and MAPK signaling pathways in plants. FEBS Lett 498:172–178

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nankivell BJ, Chen J, Boadle RA, Harris DC (1994) The role of tubular iron accumulation in the remnant kidney. J Am Soc Nephrol 4:1598–1607

    PubMed  CAS  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjärvi J (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, **a G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8:2676–2686

    Article  PubMed  CAS  Google Scholar 

  • Sakamo T, Murata N (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr Opin Microbiol 5:206–210

    Google Scholar 

  • Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  PubMed  CAS  Google Scholar 

  • Shan L, Zhao SY, Chen F, **a GM (2006) Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No. 3. Sci Agric Sin 39:225–230

    Google Scholar 

  • Sharma YK, Davis KR (1995) Isolation of a novel Arabidopsis ozone-induced cDNA by differential display. Plant Mol Biol 29:91–98

    Article  PubMed  CAS  Google Scholar 

  • Shetty K, Wahlqvist ML (2004) A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pac J Clin Nutr 13:1–24

    PubMed  CAS  Google Scholar 

  • Smyth GK, Yang YH, Speed T (2003) Statistical issues in cDNA microarray data analysis. Methods Mol Biol 224:111–136

    PubMed  CAS  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • van Baarlen P, van Esse HP, Siezen RJ, Thomma BPHJ (2008) Challenges in plant cellular pathway reconstruction based on gene expression profiling. Trends Plant Sci 13:44–50

    Article  PubMed  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Ismail AM, Xu J, Cui X, Close TJ (2007) Array-based genoty** and expression analysis of barley cv. Maythorpe and Golden Promise. BMC Genomics 8:87–100

    Article  PubMed  Google Scholar 

  • Wang J, **ang FN, **a GM (2005) Agropyron elongatum chromatin localization on the wheat chromosomes in an introgression line. Planta 221:277–286

    Article  PubMed  CAS  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, **a GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34:W720–W724

    Article  PubMed  CAS  Google Scholar 

  • **a GM, **ang FN, Zhou AF, Wang H, Chen HM (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet 107:299–305

    Article  PubMed  CAS  Google Scholar 

  • Zalejski C, Paradis S, Maldiney R, Habricot Y, Miginiac E, Rona J-P, Jeannette E (2006) Induction of abscisic acid-regulated gene expression by diacylglycerol pyrophosphate involves Ca2+ and anion currents in Arabidopsis suspension cells. Plant Physiol 141:1555–1562

    Article  PubMed  CAS  Google Scholar 

  • Zhu J (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research 973 Program of China (2009CB118300), the Major Program of the Natural Science Foundation of China (31030053), and the National Transgenic Project (2009ZX08009-082B and 2008ZX08002-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmin **a.

Additional information

Chun Liu, Shuo Li and Mengcheng Wang contributed equally to the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 376 kb)

Supplementary material 2 (DOC 25 kb)

Supplementary material 3 (DOC 67 kb)

Supplementary material 4 (DOC 37 kb)

Supplementary material 5 (RAR 1296 kb)

Supplementary material 6 (XLS 486 kb)

Supplementary material 7 (RAR 1012 kb)

Supplementary material 8 (XLS 91 kb)

Supplementary material 9 (RAR 2229 kb)

Supplementary material 10 (XLS 171 kb)

Supplementary material 11 (XLS 17 kb)

Supplementary material 12 (RAR 194 kb)

Supplementary material 13 (XLS 24 kb)

Supplementary material 14 (XLS 17 kb)

Supplementary material 15 (RAR 1028 kb)

Supplementary material 16 (RAR 907 kb)

Supplementary material 17 (XLS 61 kb)

Supplementary material 18 (XLS 227 kb)

Supplementary material 19 (XLS 56 kb)

Supplementary material 20 (XLS 27 kb)

Supplementary material 21 (XLS 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Li, S., Wang, M. et al. A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line. Plant Mol Biol 78, 159–169 (2012). https://doi.org/10.1007/s11103-011-9854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9854-1

Keywords

Navigation