Log in

PsbY is required for prevention of photodamage to photosystem II in a PsbM-lacking mutant of Synechocystis sp. PCC 6803

  • Published:
Photosynthetica

Abstract

The PsbM (3.9 kDa) and PsbY (4.2 kDa) proteins are membrane-spanning, single-helix, subunits associated with the chlorophyll-binding CP47 pre-complex of photosystem II (PSII). Removal of PsbM resulted in accumulation of PSII pre-assembly complexes and impaired electron transfer between the primary (QA) and secondary (QB) plastoquinone electron acceptors of PSII indicating that the QB-binding site and bicarbonate binding to the non-heme iron were altered in this strain. Removal of PsbY alone had only a minor impact on PSII activity but deleting PsbY in the ΔPsbM background led to additional modification of the acceptor side resulting in ΔPsbM:ΔPsbY cells being susceptible to photodamage and this required protein synthesis for recovery. Addition of bicarbonate was able to compensate for the light-induced damage in ΔPsbM:ΔPsbY cells potentially re-occupying the modified bicarbonate-binding site in the ΔPsbM:ΔPsbY strain and complementation of ΔPsbM:ΔPsbY cells with the psbY gene restored the ΔPsbM phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

CP43:

43 kDa chlorophyll-binding core antenna protein

CP47:

47 kDa chlorophyll-binding core antenna protein

DCBQ:

2,6-dichloro-1,4-benzoquinone

DCMU:

3,4-dichloro-1,1-dimethyl urea

DMBQ:

2,5-dimethyl-1,4- benzoquinone

F:

fluorescence level

Fm :

maximum fluorescence level

Fo :

initial fluorescence level

HEPES:

4-(2-hydroxyethyl)- 1-piperazineethanesulfonic acid

LMW:

lte]ow molecular weight

PCC:

Pasteur Culture Collection

QA :

primary plastoquinone electron acceptor of PSII

QB :

secondary plastoquinone electron acceptor of PS II

RC47:

a PSII pre-assembly complex composed of the reaction center assembly module and the CP47 pre-complex assembly module

S2:

the oxidation state of the oxygen-evolving complex following a single-turnover flash applied to dark-adapted cells

TES:

2-[tris(hydroxymethyl)methyl]amino-1-ethanesulfonic acid

References

  • Ago H., Adachi H., Umena Y. et al.: Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga.–J. Biol. Chem. 291: 5676–5687, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bentley F.K., Luo H., Dilbeck P. et al.: Effects of inactivating psbM and psbT on photodamage and assembly of Photosystem II in Synechocystis sp. PCC 6803.–Biochemistry 47: 11637–11646, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Boehm M., Yu J., Reisinger V. et al.: Subunit composition of CP43-less Photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II.–Phil. T. Roy. Soc. B 367: 3444–3454, 2012.

    Article  CAS  Google Scholar 

  • Boehm M., Romero E., Reisinger V. et al.: Investigating the early stages of Photosystem II assembly in Synechocystis sp. PCC 6803: isolation of CP47 and CP43 complexes.–J. Biol. Chem. 286: 14812–14819, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bricker T.M., Roose J.L., Fagerlund R.D. et al.: The extrinsic proteins of Photosystem II.–Biochim. Biophys. Acta 1817: 121–142, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Brinkert K., Causmaecker S.D., Krieger-Liszkay A. et al.: Bicarbonate-induced redox tuning in photosystem II for regulation and protection.–P. Natl. Acad. Sci. USA 113: 12144–12149, 2016.

    Article  CAS  Google Scholar 

  • Bryksin A.V., Matsumura I.: Overlap extension PCR cloning: A simple and reliable way to create recombinant plasmids.–Biotechniques 48: 463–465, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu H.-A., Chiu Y.-F.: The roles of cytochrome b559 in assembly and photoprotection of photosystem II revealed by site-directed mutagenesis studies.–Front. Plant Sci. 6: 1261, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford T.S., Eaton-Rye J.J., Summerfield T.C.: Mutation of Gly195 of the ChlH subunit of Mg-chelatase reduces chlorophyll and further disrupts PS II assembly in a Ycf48-deficient strain of Synechocystis sp. PCC 6803.–Front. Plant Sci. 7: 1060, 2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Eaton-Rye J.J.: Construction of gene interruptions and gene deletions in the cyanobacterium Synechocystis sp. strain PCC 6803.–Methods Mol. Biol. 684: 295–312, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Eaton-Rye J.J., Govindjee: Electron transfer through the quinone acceptor complex of photosystem II in bicarbonate-depleted spinach thylakoid membranes as a function of actinic flash number and frequency.–BBA-Bioenergetics 935: 237–247, 1988a.

    Article  CAS  Google Scholar 

  • Eaton-Rye J.J., Govindjee: Electron transfer through the quinone accepter complex of Photosystem II after one or two actinic flashes in bicarbonate-depleted spinach thylakoid membranes.–BBA-Bioenergetics 935: 248–257, 1988b.

    Article  CAS  Google Scholar 

  • Jackson S.A., Hervey J.R.D., Dale A.J. et al.: Removal of both Ycf48 and Psb27 in Synechocystis sp. PCC 6803 disrupts Photosystem II assembly and alters QA− oxidation in the mature complex.–FEBS Lett. 588: 3751–3760, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K., Iwai M., Ikeuchi M. et al.: Location of PsbY in oxygen-evolving photosystem II revealed by mutagenesis and X-ray crystallography.–FEBS Lett. 581: 4983–4987, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K., Umena Y., Iwai M. et al.: Roles of PsbI and PsbM in Photosystem II dimer formation and stability studied by deletion mutagenesis and X-ray crystallography.–Biochim. Biophys. Acta 1807: 319–325, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Komenda J., Sobotka R., Nixon P.J.: Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria.–Curr. Opin. Plant Biol. 15: 245–251, 2012.

    Article  PubMed  CAS  Google Scholar 

  • MacKinney G.: Absorption of light by chlorophyll solutions.–J. Biol. Chem. 140: 315–322, 1941.

    CAS  Google Scholar 

  • Meetam M., Keren N., Ohad I. et al.: The PsbY protein is not essential for oxygenic photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803.–Plant Physiol. 121: 1267–1272, 1999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris J.N., Crawford T.S., Jeffs A. et al.: Whole genome resequencing of two “wild-type” strains of the model cyanobacterium Synechocystis sp. PCC 6803.–New Zeal. J. Bot. 52: 36–47, 2014.

    Article  Google Scholar 

  • Neufeld S., Zinchenko V., Stephan D.P. et al.: On the functional significance of the polypeptide PsbY for photosynthetic water oxidation in the cyanobacterium Synechocystis sp. strain PCC 6803.–Mol. Genet. Genomics 271: 458–467, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nixon P.J., Komenda J., Barber J. et al.: Deletion of the PESTlike region of photosystem two modifies the QB-binding pocket but does not prevent rapid turnover of D1.–J. Biol. Chem. 270: 14919–14927, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Robinson H.H., Crofts A.R.: Kinetics of the oxidation-reduction reactions of the photosystem II quinone acceptor complex, and the pathway for deactivation.–FEBS Lett. 153: 221–226, 1983.

    Article  CAS  Google Scholar 

  • Robinson, H.H., Eaton-Rye, J.J., van Resen, J.J.S., Govindjee.: The effects of bicarbonate depletion and formate incubation on the kinetics of oxidation-reduction reactions of the Photosystem II quinone acceptor complex.–Z. Naturforsch. 39c: 382–385, 1984.

    Article  CAS  Google Scholar 

  • Sedoud A., Kastner L., Cox N. et al.: Effects of formate binding on the quinone-iron electron acceptor complex of Photosystem II.–Biochim. Biophys. Acta 1807: 216–226, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Shen J.-R.: The structure of Photosystem II, and the mechanism of water oxidation in photosynthesis.–Annu. Rev. Plant Biol. 66: 23–48, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Shi L.-X., Hall M., Funk C. et al.: Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins.–Biochim. Biophys. Acta 1817: 13–25, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Shevela D., Eaton-Rye J.J., Shen J.-R., Govindjee: bicarbonate: A historical perspective.–Biochim. Biophys. Acta 1817: 1134–1151, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient.–J. Photochem. Photobiol. B 104: 236–257, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Stirbet A., Riznichenko G.Y., Rubin A.B. et al.: Modeling chlorophyll a fluorescence transient: relation to photosynthesis.–Biochemistry-Moscow 79: 291–323, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Suga M., Akita F., Hirata K. et al.: Native structure of Photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses.–Nature 517: 99–103, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Suga M., Akita F., Sugahara M. et al.: Light-induced structural changes and the site of O = O bond formation in PSII caught by XFEL.–Nature 543:131–135, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Umena Y., Kawakami K., Shen J.-R. et al.: Crystal structure of oxygen-evolving Photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Uto S., Kawakami K., Umena Y. et al.: Mutational relationships between structural and functional changes in a PsbM-deletion mutants of Photosystem II.–Faraday Discuss. 198: 107–120, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Vass I., Kirilovsky D., Etienne A.: UV-B radiation-induced donor- and acceptor-side modifications of Photosystem II in the cyanobacterium Synechocystis sp. PCC 6803.–Biochemistry 38: 12786–12794, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Vinyard D.J., Brudvig G.W.: Progress towards a molecular mechanism of water oxidation in Photosystem II.–Annu. Rev. Phys. Chem. 68: 101–116, 2017.

    Article  PubMed  CAS  Google Scholar 

  • von Sydow L.V., Schwenkert S., Meurer J. et al.: The PsbY protein of Arabidopsis photosystem II is important for the redox control of cytochrome b559.–Biochem. Biophys. Acta 1857: 1524–1533, 20

    Google Scholar 

  • Wei X., Su X., Cao P. et al.: Spinach Photosystem II-LHCII supercomplex at 3.2 Å resolution.–Nature 534: 69–74, 2016.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Eaton-Rye.

Additional information

Acknowledgments: S.B. was supported by an Otago University PhD scholarship. We thank Matthew Prouse for construction of the ΔPsbM and ΔPsbY strains.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Eaton-Rye, J.J. PsbY is required for prevention of photodamage to photosystem II in a PsbM-lacking mutant of Synechocystis sp. PCC 6803. Photosynthetica 56, 200–209 (2018). https://doi.org/10.1007/s11099-018-0788-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0788-6

Additional key words

Navigation