Log in

Influence of low temperatures on the growth and photosynthetic activity of industrial chicory, Cichorium intybus L. partim

  • Published:
Photosynthetica

Abstract

The cold stress effect on early vigour and photosynthesis efficiency was evaluated for five industrial chicory varieties with contrasting early vigour. The relationships between the growth and physiological parameters were assessed. The varieties were examined at three growth temperatures: 16 (reference), 8 (intermediate) and 4 °C (stress). The effect was measured using physiological processes (growth, photosynthesis, chlorophyll a fluorescence), and pigment content. The analysis of the measured growth parameters (dry leaf and root mass, and leaf area) indicated that temperature had a significant effect on the varieties, but the overall reaction of the varieties was similar with lowering temperatures. The photosynthesis and chlorophyll a fluorescence measurements revealed significant changes for the photosynthesis (maximum net photosynthesis, quantum efficiency, light compensation point and dark respiration) and chlorophyll a fluorescence parameters (photochemical and non-photochemical quenching) with lowering temperatures for Hera and Eva, two extremes in youth growth. No significant differences could be found between the extremes for the different temperatures. The pigment content analysis revealed significant differences at 4 °C in contrast to 16 and 8 °C, especially for the xanthophyll/carotenoid pool, suggesting a protective role. Subsequently, the relationship between the physiological processes was evaluated using principal component analysis. At 4 °C, 2 principal components were detected with high discriminating power for the varieties and similar classification of the varieties as determined in the growth analysis. This provides a preview on the possible relationships between photosynthesis and growth for industrial chicory at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AGR:

average growth rate

Cab :

total chlorophyll content

Ca/Cb :

chlorophyll a/b ratio

Cab/Cx+c :

chlorophyll/carotenoid-xanthophyll pool ratio

Chl:

chlorophyll

DM:

dry mass

DML :

dry mass leaves

DMR :

dry mass roots

DMF:

N,N-dimethylformamid

F′m :

maximum chlorophyll fluorescence yield in the light-adapted state

Fs :

steady-state chlorophyll fluorescence yield level

F′o :

minimum chlorophyll fluorescence yield in the light-adapted state

Fv :

maximum variable chlorophyll fluorescence yield in the dark-adapted state

F′v :

maximum variable chlorophyll fluorescence yield in the light-adapted state

Ic :

light compensation point

LA:

leaf area

NPQ:

non-photochemical quenching

PC:

principal component

PCA:

principal component analysis

P max :

maximum net photosynthesis

P N :

net photosynthesis

PSII:

photosystem II

qN :

nonphotochemical quenching coefficient

qP :

photochemical quenching

R D :

dark respiration

RGR:

relative growth rate

SD:

standard deviation

SLA:

specific leaf area

x+c:

xanthophyll and carotenoid pool

αc :

quantum efficiency

ΦPSII :

quantum yield of photosystem II

References

  • Alves, P.L.C.A., Magalhães, A.C.N., Barja, P.R.: The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. — Bot. Rev. 68: 193–208, 2002.

    Article  Google Scholar 

  • Baert, J.: The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory roots — Ind. Crop Production 6: 195–199, 1997.

    Article  CAS  Google Scholar 

  • Baker, N.R., Rosenqvist, E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. — J of Exp Bot 55: 1607–1621, 2004.

    Article  CAS  Google Scholar 

  • Brüggeman, W., van der Kooij, T.A.W., van Hasselt, P.R.: Long-term chilling of young tomato plants under low light and subsequent recovery. II. Chlorophyll fluorescence, carbon metabolisn and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. — Planta 186: 179–187, 1992.

    Article  Google Scholar 

  • Close, D.C., Beadle, C.L.: The ecophysiology of foliar anthocyanin. — Bot. Rev 69: 149–161, 2003.

    Article  Google Scholar 

  • Devacht, S., Lootens, P., Carlier, L., Baert, J., Van Waes, J., Van Bockstaele, E.: Effect of cold stress on early vigour, photosynthesis, chlorophyll a fluorescence and pigment content of industrial chicory. — Comm. Agr. Appl. Biol. Sci. 72: 165–169, 2007.

    CAS  Google Scholar 

  • Dogniaux, R., Lemoine, M., Sneyers, R.: Année-type moyenne pour le traitement de problèmes de capitation d’énergie solaire. — Royal Meteorological Institute of Belgium, Brussels 1978.

    Google Scholar 

  • Ensminger, I., Busch, F., Huner, N.P.A.: Photostasis and cold acclimation: sensing low temperature through photosynthesis. — Physiol. Plant. 126: 28–44, 2006.

    Article  CAS  Google Scholar 

  • Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). — J. Exp. Bot. 50: 1533–1540, 1999.

    Article  CAS  Google Scholar 

  • Fracheboud, Y., Ianelli, M.A., Pietrini, F., Massaci, A.: Photoprotection in maize at suboptimal temperatures. — Proc COST Action 814: 115–120, 2000.

    Google Scholar 

  • Fracheboud, Y., Leipner, J.: The application of chlorophyll fluorescence to study light, temperature and drought stress. — In: DeEll, J.R., Toivonen, P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 125–150. Kluwer Acad. Publishers, Norwell 2003.

    Google Scholar 

  • Gitelson, A.A., Merzlyak, M.N., Chivkunova, O.B.: Optical properties and non-destructive estimation of anthocyanin content in plant leaves. — Photochem. Photobiol. 74: 38–45, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, J.A., Liberman-Cruz, M., Boero, C., Gallardo, M., Prado, F.E.: Leaf thickness, protective and photosynthetic pigments and carbohydrate content in leaves of the world’s highest elevation tree Polylepis tarapacana (Rosaceae). — Phyton: 41–53, 2002.

  • Haldimann, P.: Chilling-induced changes to carotenoid composition, photosynthesis and the maximum quantum yield of photosystem II photochemistry in two maize genotypes differing in tolerance to low temperature. — J. Plant Physiol. 151: 610–619, 1997.

    CAS  Google Scholar 

  • Haldimann, P.: Low growth temperature-induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. — Plant Cell Environ. 21: 200–208, 1998.

    Article  CAS  Google Scholar 

  • Haldimann, P.: How do changes in temperature during growth affect leaf pigment composition and photosynthesis in Zea mays genotypes differing in sensitivity to low temperature? — J. Exp. Bot. 50: 543–550, 1999.

    Article  CAS  Google Scholar 

  • Holton, T.A., Cornish, E.C.: Genetics and biochemistry of anthocyanin biosynthesis. — The Plant Cell 7: 1071–1083, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, R.: Concepts in plant growth analysis. — In: Hunt, R. (ed.): Plant Growth Curves: The Functional Approach to Plant Growth Analysis. Pp. 14–46. Edward Arnold, London 1982.

    Google Scholar 

  • Janda, T.: Use of chlorophyll fluorescence induction techniques in the study of low temperature stress in plants. — Acta Agron. Hungarica 46: 77–91, 1998.

    Google Scholar 

  • Koroleva, O.Y., Brüggeman, W., Krause, G.H.: Photoinhibition, xanthophyll cycle and in vivo chlorophyll fluorescence quenching of chilling-tolerant Oxyria digyna and chillingsensitive Zea mays. — Physiol Plant 92: 577–584, 1994.

    Article  CAS  Google Scholar 

  • Lidon, F.C., Loureiro, A.S., Vieira, D.E., Bilhó, E.A., Nobre, P., Costa, R.: Photoinhibition in chilling stressed wheat and maize. — Photosynthetica 39: 161–166, 2001.

    Article  CAS  Google Scholar 

  • Long, S.P., Zhu, X.G., Naidu, S.L., Ort, D.R.: Can improvement in photosynthesis increase crop yields? — Plant Cell Environ. 29: 315–330, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lootens, P., Van Waes, J., Carlier, L.: Effect of a short photoinhibition stress on photosynthesis, chlorophyll a fluorescence and pigment contents of different maize cultivars. Can a rapid and objective stress indicator be found? — Photosynthetica 42: 187–192, 2004.

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Niyogi, K.K., Björkman, O., Grossman, A.R.: Chlamydomonas xanthophylls cycle mutants identified by video imaging of chlorophyll fluorescence quenching. — The Plant Cell 9: 1369–1380, 1997a.

    Article  CAS  PubMed  Google Scholar 

  • Niyogi, K.K., Björkman, O., Grossman, A.R.: The roles of specific xanthophylls in photoprotection. — PNAS 94, 14162–14167, 1997b.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, G., Peñuelas, J.: Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. — Plant Ecol. 175: 179–191, 2004.

    Article  Google Scholar 

  • Osmond, C.B.: What is photoinhibition? Some insights from comparison of shade and sun plants. — In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Pp. 1–24. Bios Scientific Publ., Oxford 1994.

    Google Scholar 

  • Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.

    Article  Google Scholar 

  • Richter, M., Rühle, W., Wild, A.: Studies on the mechanisms of photosystem II photoinhibition, 1. A 2-step degradation of D1-protein. — Photosynth. Res 24: 229–235, 1990.

    Article  CAS  Google Scholar 

  • Schurr, U., Walter, A., Rascher, U.: Functional dynamics of plant growth and photosynthesis — from-steady state to dynamics — from homogeneity to heterogeneity. — Plant Cell Environ. 29: 340–352, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Taiz, L., Zeiger, E.: Photosynthesis: the light reactions. — In: Taiz, L., Zeiger, E (ed.): Plant Physiology. Pp. 111–143. Sinauer Associates Inc. Publishers, Sunderland 2002.

    Google Scholar 

  • Venema, J.H., Eekhof, M., Van Hasselt, P.R.: Analysis of lowtemperature tolerance of a tomato (Lycopersicon esculentum) cybrid with chloroplasts from a more chilling-tolerant L. hirsutum accession. — Ann. Bot. 85: 799–807, 2000.

    Article  Google Scholar 

  • Verheul, M.J., Picatto, C., Stamp, P.: Growth and development of maize (Zea mays L.) seedlings under chilling conditions in the field. — Eur. J. Agron 5: 31–43, 1996.

    Article  Google Scholar 

  • Wellburn, A.R.: The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.

    CAS  Google Scholar 

  • Wolfe, D.W.: Low temperature effects on early vegetative growth, leaf gas exchange and water potential of chillingsensitive and chilling-tolerant crop species. — Ann. Bot. 67: 205–212, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Devacht.

Additional information

Acknowledgements: The authors thank Laurent Gevaert, Luc Van Gijseghem and Christian Hendrickx for the help with the measurements, cultivation and maintenance of the plants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devacht, S., Lootens, P., Roldán-Ruiz, I. et al. Influence of low temperatures on the growth and photosynthetic activity of industrial chicory, Cichorium intybus L. partim. Photosynthetica 47, 372–380 (2009). https://doi.org/10.1007/s11099-009-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-009-0058-8

Additional key words

Navigation