Log in

Fish and microchips: on fish pain and multiple realization

  • Published:
Philosophical Studies Aims and scope Submit manuscript

Abstract

Opponents to consciousness in fish argue that fish do not feel pain because they do not have a neocortex, which is a necessary condition for feeling pain. A common counter-argument appeals to the multiple realizability of pain: while a neocortex might be necessary for feeling pain in humans, pain might be realized differently in fish. This paper argues, first, that it is impossible to find a criterion allowing us to demarcate between plausible and implausible cases of multiple realization of pain without running into a circular argument. Second, opponents to consciousness in fish cannot be provided with reasons to believe in the multiple realizability of pain. I conclude that the debate on the existence of pain in fish is impossible to settle by relying on the multiple realization argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this article, the term “fish” will refer to bony fish, since the debate focuses mostly on this group. The case of cartilaginous fish such as sharks is particularly interesting nonetheless, as it shows that some animals exhibiting pain-like behaviors are poor candidates for feeling pain when considered from a neurophysiological perspective.

  2. For a thorough analysis of the decapitated frog cases, See Klein (2017).

  3. Reductive representationalists such as Tye (1995, 2000), Carruthers (2000) or Prinz (2012) would certainly disagree with this definition. Providing a detailed argument against this view is not the object of this paper and would likely require a paper of its own. For now, I remain agnostic on whether or not pain could be reduced to a set of functions. Below, I explain what proponents of the multiple realization argument would have to do in order to demonstrate the existence of pain experiences in fish if a functional definition of pain was found. Although this view could provide a way forward in this discussion, I will assume that we do not currently have a functional definition of pain and, for this reason, I will set the reductive representationalist view aside.

References

  • Aizawa, K., & Gillett, C. (2009). The (multiple) realization of psychological and other properties in the sciences. Mind and Language, 24(2), 181–208.

    Google Scholar 

  • Allen, C. (2004). Animal pain. Noûs, 38(4), 617–643.

    Google Scholar 

  • Bain, D. (2011). The imperative view of pain. Journal of Consciousness Studies, 18(9–10), 164–185.

    Google Scholar 

  • Barron, A. B., & Klein, C. (2016). What insects can tell us about the origins of consciousness. Proceedings of the National Academy of Sciences, 113(18), 4900–4908.

    Google Scholar 

  • Baumgartner, U., Iannetti, G. D., Zambreanu, L., Stoeter, P., Treede, R.-D., & Tracey, I. (2010). Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: A high-resolution fMRI study. Journal of Neurophysiology, 104(5), 2863–2872.

    Google Scholar 

  • Baysan, U. (2015). Realization relations in metaphysics. Minds and Machines, 25(3), 247–260.

    Google Scholar 

  • Bentham, J. (1789). Introduction to the principles of morals and legislation. Oxford: Clarendon.

    Google Scholar 

  • Beukema, J. J. (1969). Angling experiments with carp. Netherlands Journal of Zoology, 20(1), 81–92.

    Google Scholar 

  • Birch, J. (2017). Animal sentience and the precautionary principle. Animal Sentience, 017017, 1–15.

    Google Scholar 

  • Block, N. (1978). Troubles with functionalism. Minnesota Studies in the Philosophy of Science, 9(1968), 261–325.

    Google Scholar 

  • Block, N. (1995). On a confusion about a function of consciousness. The Behavioral and Brain Sciences, 18(2), 227–247.

    Google Scholar 

  • Block, N. J., & Fodor, J. (1972). What psychological states are not. The Philosophical Review, 81(2), 159.

    Google Scholar 

  • Braithwaite, V. (2010). Do fish feel pain. Oxford: Oxford University Press.

    Google Scholar 

  • Braithwaite, V. A., & Droege, P. (2016). Why human pain can’t tell us whether fish feel pain. Animal Sentience, 009(Commentary on Key on Fish Pain), 1–2.

    Google Scholar 

  • Brooks, J. C., Zambreanu, L., Godinez, A., Craig, A. D., & Tracey, I. (2005). Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. NeuroImage, 27(1), 201–209.

    Google Scholar 

  • Carruthers, P. (2000). Phenomenal consciousness: A naturalistic theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Carruthers, P. (2005). Why the question of animal consciousness might not matter very much. Philosophical Psychology, 18(1), 83–102.

    Google Scholar 

  • Carruthers, P. (2017). Valence and value. Philosophy and Phenomenological Research. https://doi.org/10.1111/phpr.1239.

    Google Scholar 

  • Cecchetto, G., Milanese, L., Giordano, R., Viero, A., Suma, V., & Manara, R. (2013). Looking at the missing brain: Hydranencephaly case series and literature review. Pediadric Neurology, 48(2), 152–158.

    Google Scholar 

  • Cerrato, P., Lentini, A., Baima, C., Grasso, M., Azzaro, C., Bosco, G., et al. (2005). Pseudo-ulnar sensory loss in a patient from a small cortical infarct of the postcentral knob. Neurology, 64(11), 1981–1982.

    Google Scholar 

  • Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Conscious Studies, 2(3), 200–219.

    Google Scholar 

  • Clark, A. (2005). Painfulness is not a quale. In M. Aydede (Ed.), Pain: New essays on its nature and the methodology of its study (pp. 177–197). Cambridge, MA: MIT Press.

    Google Scholar 

  • Cutter, B., & Tye, M. (2011). Tracking representationalism and the painfulness of pain. Philosophical Issues, 21(1), 90–109.

    Google Scholar 

  • Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14(2), 143–152.

    Google Scholar 

  • Dawkins, M. (2015). Animal welfare and the paradox of animal consciousness. Advances in the Study of Behavior, 47, 5–38.

    Google Scholar 

  • Derbyshire, S. W. G. (2016). Fish lack the brains and the psychology for pain. Animal Sentience Derbyshire Commentary on Key on Fish Pain, 025, 1–4.

    Google Scholar 

  • Dinets, V. (2016). No cortex, no cry (commentary on key on fish pain). Animal Sentience, 13, 7.

    Google Scholar 

  • Dunlop, R., Millsopp, S., & Laming, P. (2006). Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Applied Animal Behaviour Science, 97(2–4), 255–271.

    Google Scholar 

  • Edelman, D. B., Baars, B. J., & Seth, A. K. (2005). Identifying hallmarks of consciousness in non-mammalian species. Consciousness and Cognition, 14(1), 169–187.

    Google Scholar 

  • Edelman, D. B., & Seth, A. K. (2009). Animal consciousness: A synthetic approach. Trends in Neurosciences, 32(9), 476–484.

    Google Scholar 

  • Elwood, R. (2012). Evidence for pain in decapod crustaceans. Animal Welfare, 21(S2), 23–27.

    Google Scholar 

  • Elwood, R. W. (2016). A single strand of argument with unfounded conclusion. Animal Sentience Elwood Commentary on Key on Fish Pain, 026, 1–3.

    Google Scholar 

  • Ferrier, D. (1876). The functions of the brain. London: Smith, Elder and Co.

    Google Scholar 

  • Fodor, J. (2000). Special sciences: Still autonomous after all these years: A reply to Jaegwon Kim’s multiple realization and the metaphysics of reduction. In Critical condition. Cambridge, MA: MIT Press.

  • Fodor, J. A. (1974). Special sciences (or: the disunity of science as a working hypothesis). Synthese, 28(2), 97–115.

    Google Scholar 

  • Frot, M., Faillenot, I., & Mauguière, F. (2014). Processing of nociceptive input from posterior to anterior insula in humans. Human Brain Map**, 35(11), 5486–5499.

    Google Scholar 

  • Gillett, C. (2003). The metaphysics of realization, multiple realizability, and the special sciences. The Journal of Philosophy, 100(11), 591–603.

    Google Scholar 

  • Godfrey-Smith, P. (2016). Pain in parallel. Animal Sentience, 1, 21.

    Google Scholar 

  • Godfrey-Smith, P. (2017). Other minds: The octopus, the sea, and the deep origins of consciousness. New York: Harper-Collins.

    Google Scholar 

  • Goltz, F. L. (1869). Beiträge zur Lehre von den Functionen der Nervencentren des Frosches. Berlin: A. Hirschwald.

    Google Scholar 

  • Griffin, D. R. (1976). The question of animal awareness: Evolutionary continuity of mental experience. New York: Rockefeller University Press.

    Google Scholar 

  • Gross, J., Schnitzler, A., Timmermann, L., & Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biology, 5(5), 1168–1173.

    Google Scholar 

  • Hall, R. J. (2008). If it itches, scratch!. Australasian Journal of Philosophy, 86(4), 525–535.

    Google Scholar 

  • Haugeland, J. (1978). The nature and plausibility of cognitivism. Behavioral and Brain Sciences, 2, 215–260.

    Google Scholar 

  • Henderson, L. A., Rubin, T. K., & Macefield, V. G. (2011). Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Human Brain Map**, 32(10), 1592–1601.

    Google Scholar 

  • Huntingford, F. A., Adams, C., Braithwaite, V. A., Kadri, S., Pottinger, T. G., Sandøe, P., et al. (2006). Current issues in fish welfare. Journal of Fish Biology, 68, 332–372.

    Google Scholar 

  • Ikeda, T., Yoshida, M., & Isa, T. (2011). Lesion of primary visual cortex in monkey impairs the inhibitory but not the facilitatory cueing effect on saccade. Journal of Cognitive Neuroscience, 23(5), 1160–1169.

    Google Scholar 

  • Isa, T., & Yoshida, M. (2009). Saccade control after V1 lesion revisited. Current Opinion in Neurobiology, 19(6), 608e614.

    Google Scholar 

  • Jones, R. C. (2013). Science, sentience, and animal welfare. Biology and Philosophy, 28(1), 1–30.

    Google Scholar 

  • Kato, R., Takaura, K., Ikeda, T., Yoshida, M., & Isa, T. (2011). Contribution of the retino-tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys. European Journal of Neuroscience, 33(11), 1952–1960.

    Google Scholar 

  • Key, B. (2015). Fish do not feel pain and its implications for understanding phenomenal consciousness. Biology and Philosophy, 30(2), 149–165.

    Google Scholar 

  • Key, B. (2016). Why fish do not feel pain. Animal Sentience, 3(Brian Key on Fish Pain), 1–33.

    Google Scholar 

  • Key, B., Arlinghaus, R., & Browman, H. I. (2016). Insects cannot tell us anything about subjective experience or the origin of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 3813.

    Google Scholar 

  • Klein, A. (2017). The curious case of the decapitated frog: On experiment and philosophy. British Journal for the History of Philosophy, 0(4), 1–28.

    Google Scholar 

  • Klein, C. (2007). An imperative theory of pain. Journal of Philosophy, 104(10), 517–532.

    Google Scholar 

  • LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653–676.

    Google Scholar 

  • LeDoux, J. E., & Brown, R. (2017). A higher-order theory of emotional consciousness. Proceedings of the National Academy of Sciences, 114(10), E2016–E2025.

    Google Scholar 

  • Levin, J. (2017). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2017 edition.

  • Lewes, G. H. (1873). Sensation in the spinal cord. Nature, 9, 83–84.

    Google Scholar 

  • Lewes, G. H. (1877). Problems of life and mind, second series: The physical basis of mind. London: Trübner.

    Google Scholar 

  • Lieberman, M. D., & Eisenberger, N. I. (2015). The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference. Proceedings of the National Academy of Sciences, 112(49), 15250–15255.

    Google Scholar 

  • Lockwood, P. L., Iannetti, G. D., & Haggard, P. (2013). Transcranial magnetic stimulation over human secondary somatosensory cortex disrupts perception of pain intensity. Cortex, 49(8), 2201–2209.

    Google Scholar 

  • Loeser, J. D., & Treede, R. D. (2008). The Kyoto protocol of IASP Basic Pain Terminology. Pain, 137(3), 473–477.

    Google Scholar 

  • Mancini, F., Haggard, P., Iannetti, G. D., Longo, M. R., & Sereno, M. I. (2012). Fine-grained nociceptive maps in primary somatosensory cortex. Journal of Neuroscience, 32(48), 17155–17162.

    Google Scholar 

  • Manzotti, R. (2016). No evidence that pain is painful neural process. Animal Sentience, 17, 2015–2017.

    Google Scholar 

  • Mazzola, L., Isnard, J., Peyron, R., Guénot, M., & Mauguière, F. (2009). Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain, 146(1–2), 99–104.

    Google Scholar 

  • McAbee, G. N., Chan, A., & Erde, E. L. (2000). Prolonged survival with hydranencephaly: Report of two patients and literature review. Pediatric Neurology, 23(1), 80–84.

    Google Scholar 

  • Merker, B. (2007). Consciousness without a cerebral cortex: A challenge for neuroscience and medicine. Behavioral and Brain Sciences, 30(1), 63–81.

    Google Scholar 

  • Merker, B. (2008). Life expectancy in hydranencephaly. Clinical Neurology and Neurosurgery, 110(3), 213–214.

    Google Scholar 

  • Merker, B. (2016). How not to move the line drawn on pain. Animal Sentience, 064, 1–3.

    Google Scholar 

  • Midgley, M. (1983). Animals and why they matter: A journey around the species barrier. Harmondsworth: Pelican Books.

    Google Scholar 

  • Moayedi, M. (2014). All roads lead to the insula. Pain, 155(10), 1920–1921.

    Google Scholar 

  • Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83(4), 435–450.

    Google Scholar 

  • Navratilova, E., **e, J. Y., Meske, D., Qu, C., Morimura, K., Okun, A., et al. (2015). Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. Journal of Neuroscience, 35(18), 7264–7271.

    Google Scholar 

  • Ng, Y.-K. (2016). Could fish feel pain? A wider perspective (Ng commentary on key on fish pain). Animal Sentience, 19, 1–3.

    Google Scholar 

  • Omori, S., Isose, S., Otsuru, N., Nishihara, M., Kuwabara, S., Inui, K., et al. (2013). Somatotopic representation of pain in the primary somatosensory cortex (S1) in humans. Clinical Neurophysiology, 124(7), 1422–1430.

    Google Scholar 

  • Ostrowsky, K. (2002). Representation of pain and somatic sensation in the human insula: A study of responses to direct electrical cortical stimulation. Cerebral Cortex, 12(4), 376–385.

    Google Scholar 

  • Panksepp, J. (2011). Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals. PLoS ONE, 6(9), e21236.

    Google Scholar 

  • Pavone, P., Praticò, A. D., Vitaliti, G., Ruggieri, M., Rizzo, R., Parano, E., et al. (2014). Hydranencephaly: Cerebral spinal fluid instead of cerebral mantles. Italian Journal of Pediatrics, 40(1), 79.

    Google Scholar 

  • Pflüger, E. (1853). Die sensorischen Functionen des Rückenmarks der Wirbelthiere: nebst einer neuen Lehre über die Leitungsgesetze der Reflexionen. Berlin: Hirschwald.

    Google Scholar 

  • Polger, T. W., & Shapiro, L. A. (2016). The multiple realization book. Oxford: Oxford University Press.

    Google Scholar 

  • Prinz, J. (2012). The conscious brain. Oxford: Oxford University Press.

    Google Scholar 

  • Putnam, H. (1967). The nature of mental states. In Mind, language and reality—Philisophical papers (Vol. 2, pp. 603–610). New York: Cambridge University Press.

  • Qu, C., King, T., Okun, A., Lai, J., Fields, H. L., & Porreca, F. (2011). Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain, 152(7), 1641–1648.

    Google Scholar 

  • Rollin, B. (1989). The unheeded cry. Oxford: Oxford University Press.

    Google Scholar 

  • Rose, J. D. (2007). Anthropomorphism and ’mental welfare’ of fishes. Diseases of Aquatic Organisms, 75(2), 139–154.

    Google Scholar 

  • Rose, J. D., Arlinghaus, R., Cooke, S. J., Diggles, B. K., Sawynok, W., Stevens, E. D., et al. (2014). Can fish really feel pain? Fish and Fisheries, 15(1), 97–133.

    Google Scholar 

  • Rosenthal, D. (1986). Two concepts of consciousness. Philosophical Studies, 49(3), 329–359.

    Google Scholar 

  • Segerdahl, A. R., Mezue, M., Okell, T. W., Farrar, J. T., & Tracey, I. (2015). The dorsal posterior insula subserves a fundamental role in human pain. Nature Neuroscience, 18(4), 499–500.

    Google Scholar 

  • Segner, H. (2016). Why babies do not feel pain, or: How structure-derived functional interpretations can go wrong. Animal Sentience, 1, 26.

    Google Scholar 

  • Seth, A. K. (2016). Why fish pain cannot and should not be ruled out. Animal Sentience, 3, 1–5.

    Google Scholar 

  • Shewmon, D. A., Holmes, G. L., & Byrne, P. A. (1999). Consciousness in congenitally decorticate children: Developmental vegetative state as self-fulfilling prophecy. Developmental Medicine and Child Neurology, 41(6), 364–374.

    Google Scholar 

  • Singer, P. (1975). Animal liberation: A new ethics for the treatment of animals. London: Jonathan Cape.

    Google Scholar 

  • Smith, E. S. J., & Lewin, G. R. (2009). Nociceptors: A phylogenetic view. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(12), 1089–1106.

    Google Scholar 

  • Sneddon, L. (2011). Pain perception in fish: Evidence and implications for the use of fish. Journal of Consciousness Studies, 18(9–10), 209–229.

    Google Scholar 

  • Sneddon, L. U., Braithwaite, V. A., & Gentle, M. J. (2003). Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proceedings of the Royal Society B: Biological Sciences, 270(1520), 1115–1121.

    Google Scholar 

  • Snow, P. J., Plenderleith, M. B., & Wright, L. L. (1993). Quantitative study of primary sensory neurone populations of three species of elasmobranch fish. Journal of Comparative Neurology, 334(1), 97–103.

    Google Scholar 

  • Spering, M., & Carrasco, M. (2015). Acting without seeing: Eye movements reveal visual processing without awareness. Trends in Neurosciences, 38(4), 247–258.

    Google Scholar 

  • Tye, M. (1995). A representational theory of pains and their phenomenal character. Philosophical Perspectives, 9(1995), 223–239.

    Google Scholar 

  • Tye, M. (2000). Consciousness, color, and content. Cambridge: MIT Press.

    Google Scholar 

  • Tye, M. (2017). Tense bees and shell-shocked crabs: Are animals conscious?. Oxford: Oxford University Press.

    Google Scholar 

  • Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pain. Pain, 154(3), 334–344.

    Google Scholar 

  • Weiskopf, D. A. (2011). The functional unity of special science kinds. British Journal for the Philosophy of Science, 62(2), 233–258.

    Google Scholar 

  • Weiskrantz, L. (2009). Blindsight: A case study spanning 35 years and new developments (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Werth, R. (2007). Residual visual function after loss of both cerebral hemispheres in infancy. Investigative Ophthalmology and Visual Science, 48(7), 3098–3106.

    Google Scholar 

  • Wilson, R. A., & Craver, C. F. (2006). Realization: Metaphysical and scientific perspectives. In P. Thagard (Ed.), Handbook of the philosophy of psychology and cognitive science (pp. 81–104). Amsterdam: Elsevier.

    Google Scholar 

  • Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A., & Iannetti, G. D. (2012). Gamma-band oscillations in the primary somatosensory cortex—A direct and obligatory correlate of subjective pain intensity. Journal of Neuroscience, 32(22), 7429–7438.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Michel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, M. Fish and microchips: on fish pain and multiple realization. Philos Stud 176, 2411–2428 (2019). https://doi.org/10.1007/s11098-018-1133-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11098-018-1133-4

Keywords

Navigation