Log in

Exploration of the Plausible Mechanism of Ethambutol Induced Ocular Toxicity by Using Proteomics Informed Physiologically Based Pharmacokinetic (PBPK) Modeling

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Ethambutol (EMB) is a first-line anti-tubercular drug that is known to cause optic neuropathy. The exact mechanism of its eye toxicity is unknown; however, proposition is metal chelating effect of both EMB and its metabolite 2,2'-(ethylenediamino)-dibutyric acid (EDBA). The latter is formed by sequential metabolism of EMB by alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The purpose of this study was to predict the levels of drug and EDBA in the eye using physiologically based pharmacokinetic (PBPK) modeling.

Methods

The PBPK model of EMB was developed using GastroPlus. The intrinsic hepatic clearance of ALDH, calculated by the model, was scaled down using proteomics data to estimate the rate of formation of EDBA in the eye. Additionally, the comparative permeability of EMB and EDBA was assessed by employing in silico and in vitro approaches. The rate of formation of EDBA in the eye and permeability data were then incorporated in a compartmental model to predict the ocular levels of EMB and EDBA.

Results

The simulation results of compartmental model highlighted that there was an on-site formation of EDBA upon metabolism of EMB. Furthermore, in silico and in vitro studies revealed that EDBA possessed much lower permeability than EMB. These observations meant that once EDBA was formed in the eye, it was not permeated out and hence achieved higher ocular concentration.

Conclusion

The on-site formation of EDBA in the eye, its higher local concentration due to lower ocular clearance and its pre-known characteristic to chelate metal species better explains the ocular toxicity shown by EMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. WHO. Ethambutol efficacy and toxicity: literature review and recommendations for daily and intermittent dosage in children. Geneva, Switzerland: World Health Organization; 2006.

    Google Scholar 

  2. WHO. Stop TB initiative: treatment of tuberculosis: guidelines. Geneva, Switzerland: World Health Organization; 2010.

    Google Scholar 

  3. Addington WW. The side effects and interactions of anti-tuberculosis drugs. Chest. 1979;76(6):782–4.

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez KL, Krop LC. Ethambutol-induced ocular toxicity revisited. Ann Pharmacother. 1993;27(1):102–3.

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee V, Buchanan D, Friedmann A, et al. Ocular toxicity following ethambutol in standard dosage. Br J Dis Chest. 1986;80:288–91.

    Article  CAS  PubMed  Google Scholar 

  6. Citron K, Thomas G. Ocular toxicity from ethambutol. Thorax. 1986;41(10):737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Palma P, Franco F, Bragliani G, et al. The incidence of optic neuropathy in 84 patients treated with ethambutol. Metab Pediatr Syst Ophthalmol. 1989;12(1–3):80–2.

    Google Scholar 

  8. Estlin KAT, Sadun AA. Risk factors for ethambutol optic toxicity. Int Ophthalmol. 2010;30(1):63–72.

    Article  Google Scholar 

  9. Garg P, Garg R, Prasad R, et al. A prospective study of ocular toxicity in patients receiving ethambutol as a part of directly observed treatment strategy therapy. Lung India. 2015;32(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Griffith DE, Brown Elliott BA, Shepherd S, et al. Ethambutol ocular toxicity in treatment regimens for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2005;172(2):250–3.

    Article  PubMed  Google Scholar 

  11. Lee MS, Melamud A. Ocular Ethambutol Toxicity. In: Response. Mayo clinic proceedings: Elsevier; 2004. p. 701.

    Google Scholar 

  12. Leibold JE. The ocular toxicity of ethambutol and its relation to dose. Ann N Y Acad Sci. 1966;135(2):904–9.

    Article  CAS  PubMed  Google Scholar 

  13. Menon V, Jain D, Saxena R, et al. Prospective evaluation of visual function for early detection of ethambutol toxicity. Br J Ophthalmol. 2009;93(9):1251–4.

    Article  CAS  PubMed  Google Scholar 

  14. Roberts S. A reveiw of the papers on the ocualr toxicty of ethambutol hydrochloride, Myambutol: an anti-tuberculosis drug. Am J Optom Physiol Opt. 1974;51(12):987–92.

    Article  CAS  PubMed  Google Scholar 

  15. Smith J. Should ethambutol be barred? J Neuroophthalmol. 1987;7(2):84–6.

    Google Scholar 

  16. Tsai RK, Lee YH. Reversibility of ethambutol optic neuropathy. J Ocul Pharmacol Ther. 1997;13(5):473–7.

    Article  CAS  PubMed  Google Scholar 

  17. Yang S, Falardeau J, Winthrop K, et al. Ethambutol-induced optic neuropathy in nontuberculous mycobacterial disease. Int J Tuberc Lung Dis. 2021;25(8):680–2.

    Article  CAS  PubMed  Google Scholar 

  18. Makunyane P, Mathebula S. Update on ocular toxicity of ethambutol. Afr Vis Eye Health. 2016;75(1):1–4.

    Article  Google Scholar 

  19. Santaella RM, Fraunfelder FW. Ocular adverse effects associated with systemic medications. Drugs. 2007;67(1):75–93.

    Article  CAS  PubMed  Google Scholar 

  20. Sadun AA, Wang MY. Ethambutol optic neuropathy: how we can prevent 100,000 new cases of blindness each year. J Neuroophthalmol. 2008;28(4):265–8.

    Article  PubMed  Google Scholar 

  21. Vistamehr S, Walsh TJ, Adelman RA. Ethambutol neuroretinopathy, Seminars in ophthalmology. Taylor & Francis. 2007. pp. 141–146.

  22. DeVita EG, Miao M, Sadun AA. Optic neuropathy in ethambutol-treated renal tuberculosis. J Neuroophthalmol. 1987;7(2):77–86.

    CAS  Google Scholar 

  23. Matsumoto T, Kusabiraki R, Arisawa A, et al. Drastically progressive ethambutol-induced optic neuropathy after withdrawal of ethambutol: a case report and literature review. Intern Med J. 2021;60(11):1785–8.

    Google Scholar 

  24. Peets EA, Buyske DA. Comparative metabolism of ethambutol and its l-isomer. Biochem Pharmacol. 1964;13(10):1403–19.

    Article  CAS  PubMed  Google Scholar 

  25. Balhara A, Basit A, Argikar UA, Dumouchel JL, Singh S, Prasad B. Comparative proteomics analysis of the post mitochondrial supernatant fraction of human lens-free whole eye and liver. Drug Metab Dispos. 2021;49(7):592–600.

    Article  CAS  PubMed  Google Scholar 

  26. Cole A, May PM, Williams DR. Metal binding by pharmaceuticals. Part 1. Copper (II) and zinc (II) interactions following ethambutol administration. Agents Actions. 1981;11(3):296–305.

    Article  CAS  PubMed  Google Scholar 

  27. Lee CS, Brater DC, Gambertoglio JG, et al. Disposition kinetics of ethambutol in man. J Pharmacokin Biopharm. 1980;8(4):335–46.

    Article  CAS  Google Scholar 

  28. Ladumor MK, Bhatt DK, Gaedigk A, et al. Ontogeny of hepatic sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos. 2019;47(8):818–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ladumor MK, Thakur A, Sharma S, et al. A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modelling and simulation. Sci Rep. 2019;9(1):1–16.

    Article  CAS  Google Scholar 

  30. Yang J, Jamei M, Yeo KR, et al. Misuse of the well-stirred model of hepatic drug clearance. Drug Metab Dispos. 2007;35(3):501–2.

    Article  CAS  PubMed  Google Scholar 

  31. Lee CS, Gambertoglio JG, Brater DC, et al. Kinetics of oral ethambutol in the normal subject. Clin Pharmacol Ther. 1977;22:615–21.

    Article  CAS  PubMed  Google Scholar 

  32. DrugBank, Ethambutol, Available from https://go.drugbank.com/salts/DBSALT000446. Accessed on 09 June 2021.

  33. Gaohua L, Wedagedera J, Small B, et al. Development of a multi-compartment permeability‐limited lung PBPK model and its application in predicting pulmonary pharmacokinetics of anti-tuberculosis drugs. CPT: Pharmacomet Syst Pharmacol, 2015;4(10):605–613.

  34. Becker C, Dressman J, Amidon G, et al. Biowaiver monographs for immediate release solid oral dosage forms: Ethambutol dihydrochloride. J Pharm Sci. 2008;97(4):1350–60.

    Article  CAS  PubMed  Google Scholar 

  35. Hellinen L, Hongisto H, Ramsay E, et al. Drug flux across RPE cell models: The hunt for an appropriate outer blood-retinal barrier model for use in early drug discovery. Pharmaceutics. 2020;12(2):176.

    Article  CAS  PubMed Central  Google Scholar 

  36. Hellinen L, Pirskanen L, Tengvall-Unadike U, et al. Retinal pigment epithelial cell line with fast differentiation and improved barrier properties. Pharmaceutics. 2019;11(8):412.

    Article  CAS  PubMed Central  Google Scholar 

  37. Kadam RS, Scheinman RI, Kompella UB. Pigmented-MDCK (P-MDCK) cell line with tunable melanin expression: an in vitro model for the outer blood-retinal barrier. Mol Pharm. 2012;9(11):3228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Q, Strab R, Kardos P, et al. Application and limitation of inhibitors in drug–transporter interactions studies. Int J Pharm. 2008;356(1–2):12–8.

    Article  CAS  PubMed  Google Scholar 

  39. Ball K, Bouzom F, Scherrmann JM, et al. Physiologically based pharmacokinetic modelling of drug penetration across the blood-brain barrier: towards a mechanistic IVIVE-based approach. AAPS J. 2013;15(4):913–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Del Amo EM, Rimpelä AK, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:34–185.

    Google Scholar 

  41. Ramsay E, Hagström M, Vellonen KS, et al. Role of retinal pigment epithelium permeability in drug transfer between posterior eye segment and systemic blood circulation. Eur J Pharm Biopharm. 2019;143:18–23.

    Article  CAS  PubMed  Google Scholar 

  42. Hellinen L, Sato K, Reinisalo M, et al. Quantitative protein expression in the human retinal pigment epithelium: comparison between apical and basolateral plasma membranes with emphasis on transporters. Investig Ophthalmol Vis Sci. 2019;60(15):5022–34.

    Article  CAS  Google Scholar 

  43. Vellonen KS, Soini EM, Del Amo EM, et al. Prediction of ocular drug distribution from systemic blood circulation. Mol Pharm. 2016;13(9):2906–11.

    Article  CAS  PubMed  Google Scholar 

  44. Vellonen KS, Hellinen L, Mannermaa E, et al. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev. 2018;126:3–22.

    Article  CAS  PubMed  Google Scholar 

  45. Saktiawati AM, Sturkenboom MG, Stienstra Y, et al. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. J Antimicrob Chemother. 2016;71(3):703–10.

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Wang R, O’Gorman M, et al. Bioequivalence of fixed-dose combination Myrin®-P Forte and reference drugs in loose combination. Int J Tuberc Lung Dis. 2013;17(12):1596–601.

    Article  CAS  PubMed  Google Scholar 

  47. Xu J, ** H, Zhu H, et al. Oral bioavailability of rifampicin, isoniazid, ethambutol, and pyrazinamide in a 4-drug fixed-dose combination compared with the separate formulations in healthy Chinese male volunteers. Clin Ther. 2013;35(2):161–8.

    Article  PubMed  CAS  Google Scholar 

  48. Strauch S, Jantratid E, Stahl M, et al. The biowaiver procedure: its application to anti-tuberculosis products in the WHO prequalification programme. J Pharm Sci. 2011;100(3):822–30.

    Article  CAS  PubMed  Google Scholar 

  49. Buyske D, Sterling W, Peets E. Pharmacological and biochemical studies on ethambutol in laboratory animals. Ann NY Acad Sci. 1966;135(2):711–25.

    Article  CAS  PubMed  Google Scholar 

  50. Chung H, Yoon YH, Hwang JJ, et al. Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells. Toxicol Appl Pharmacol. 2009;235(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  51. Delacoux E, Moreau Y, Godefroy A, et al. Prevention of ocular toxicity of ethambutol: study of zincaemia and chromatic analysis (author’s transl). J Fr Ophtalmol. 1978;1(3):191–6.

    CAS  PubMed  Google Scholar 

  52. Figueroa R, Weiss H, Smith JC Jr, et al. Effect of ethambutol on the ocular zinc concentration in dogs. Am Rev Respir Dis. 1971;104(4):592–4.

    CAS  PubMed  Google Scholar 

  53. Heng JE, Vorwerk CK, Lessell E, et al. Ethambutol is toxic to retinal ganglion cells via an excitotoxic pathway. Investig Ophthalmol Vis Sci. 1999;40(1):190–6.

    CAS  Google Scholar 

  54. King AB, Schwartz R. Effects of the anti-tuberculous drug ethambutol on zinc absorption, turnover and distribution in rats fed diets marginal and adequate in zinc. J Nutr. 1987;117(4):704–8.

    Article  CAS  PubMed  Google Scholar 

  55. Kozak SF, Inderlied CB, Hsu HY, et al. The role of copper on ethambutol’s antimicrobial action and implications for ethambutol-induced optic neuropathy. Diagn Microbiol Infect Dis. 1998;30(2):83–7.

    Article  CAS  PubMed  Google Scholar 

  56. Minutillo U, Miniero MA, Severino R, et al. Importance of preventing retrobulbar optic neuropathy from ethambutol by the determination of zinc in the blood and by the Farnsworth test of color sense. Monaldi Arch Chest Dis. 1980;35(4):217–28.

    CAS  Google Scholar 

  57. Shindler KS, Zurakowski D, Dreyer EB. Caspase inhibitors block zinc-chelator induced death of retinal ganglion cells. NeuroReport. 2000;11(10):2299–302.

    Article  CAS  PubMed  Google Scholar 

  58. Weismann K. Chelating drugs and zinc. Dan Med Bull. 1986;33(4):208–11.

    CAS  PubMed  Google Scholar 

  59. Yoon YH, Jung KH, Sadun AA, et al. Ethambutol-induced vacuolar changes and neuronal loss in rat retinal cell culture: mediation by endogenous zinc. Toxicol Appl Pharmacol. 2000;162(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  60. Chen HY, Lai SW, Muo CH, et al. Ethambutol-induced optic neuropathy: a nationwide population-based study from Taiwan. Br J Ophthalmol. 2012;96(11):1368–71.

    Article  PubMed  Google Scholar 

  61. Demiryurek BE, Gungen BD, Acar BA, et al. A case with chronic renal failure involving ethambutol and isoniazid associated bilateral optic neuritis development. Biomed Res. 2017;28(4):1500–2.

    Google Scholar 

  62. Fang JT, Chen YC, Chang MY. Ethambutol-induced optic neuritis in patients with end stage renal disease on hemodialysis: two case reports and literature review. Ren Fail. 2004;26(2):189–93.

    Article  PubMed  Google Scholar 

  63. Kanaujia V, Jain VK, Sharma K, et al. Ethambutol-induced optic neuropathy in renal disorder: a clinico-electrophysiological study. Can J Ophthalmol. 2019;54(3):301–5.

    Article  PubMed  Google Scholar 

  64. Varughese A, Brater DC, Benet LZ, et al. Ethambutol kinetics in patients with impaired renal function. Am Rev Respir Dis. 1986;134(1):34–8.

    CAS  PubMed  Google Scholar 

  65. Chuenkongkaew W, Samsen P, Thanasombatsakul N. Ethambutol and optic neuropathy. J Med Assoc Thai. 2003;86(7):622–5.

    CAS  PubMed  Google Scholar 

  66. Rasool M, Malik A, Manan A, et al. Determination of potential role of anti-oxidative status and circulating biochemical markers in the pathogenesis of ethambutol induced toxic optic neuropathy among diabetic and non-diabetic patients. Saudi J Biol Sci. 2015;22(6):739–43.

    Article  CAS  PubMed  Google Scholar 

  67. Chiotoroiu S, Noaghi M, Stefaniu G, et al. Tobacco-alcohol optic neuropathy-clinical challenges in diagnosis. J Med Life. 2014;7(4):472.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to sincerely thank Simulation Plus (Lancaster, USA) for providing the academic license of Gastroplus and ADMET predictorTM to our institute, NIPER, SAS Nagar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saranjit Singh.

Ethics declarations

Conflict of Interest statement

Authors declare no conflict of interest for the present work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 653 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balhara, A., Ladumor, M.K., Nankar, R.P. et al. Exploration of the Plausible Mechanism of Ethambutol Induced Ocular Toxicity by Using Proteomics Informed Physiologically Based Pharmacokinetic (PBPK) Modeling. Pharm Res 39, 677–689 (2022). https://doi.org/10.1007/s11095-022-03227-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03227-9

Key Words

Navigation