Log in

Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs.

Methods

The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy.

Results

The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (<10 nm) were observed in spray-dried ASDs, whereas larger domains (>30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains.

Conclusions

The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AAPS:

Amorphous-amorphous phase separation

API:

Active pharmaceutical ingredient

ASD:

Amorphous solid dispersion

CP:

Cross polarization

CP-MAS:

Cross polarization magic angle spinning

DCM:

Dichloromethane

DSC:

Differential scanning calorimetry

HPMC:

Hydroxypropyl methyl cellulose

ITZ:

Itraconazole

MeOH:

Methanol

R6G:

Rhodamine-6-G

SD:

Spray drying

SEM:

Scanning electron microscopy

ssNMR:

Solid state nuclear magnetic resonance

T1 :

Laboratory frame relaxation time

T1rho :

Rotating frame relaxation time

Tg:

Glass transition temperature

TMS:

Tetramethylsilane

XRD:

X-ray diffraction

References

  1. Kerns EH, Di L. Advantages of good drug-like properties. In: Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization.  Burlington: Academic Press; 2015. p. 6–16.

  2. Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B. 2014;4(1):18–25.

    Article  PubMed  Google Scholar 

  3. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  4. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355–77.

    Article  CAS  PubMed  Google Scholar 

  5. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.

    Article  CAS  PubMed  Google Scholar 

  6. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  7. Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm. 2008;70(2):493–9.

    Article  CAS  PubMed  Google Scholar 

  8. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J Pharm Sci. 2010;99(3):1254–64.

    Article  CAS  PubMed  Google Scholar 

  9. Miyazaki T, Yoshioka S, Aso Y, Kojima S. Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci. 2004;93(11):2710–7.

    Article  CAS  PubMed  Google Scholar 

  10. Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly (vinylpyrrolidone) and poly (vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res. 1999;16(11):1722–8.

    Article  CAS  PubMed  Google Scholar 

  11. Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci. 2006;95(12):2692–705.

    Article  CAS  PubMed  Google Scholar 

  12. Rumondor AC, Stanford LA, Taylor LS. Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res. 2009;26(12):2599–606.

    Article  CAS  PubMed  Google Scholar 

  13. Alonzo DE, Zhang GG, Zhou D, Gao Y, Taylor LS. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res. 2010;27(4):608–18.

    Article  CAS  PubMed  Google Scholar 

  14. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R. Is a distinctive single T g a reliable indicator for the homogeneity of amorphous solid dispersion? Int J Pharm. 2010;395(1):232–5.

    Article  CAS  PubMed  Google Scholar 

  15. Purohit HS, Taylor LS. Miscibility of Itraconazole–Hydroxypropyl methylcellulose blends: Insights with high resolution analytical methodologies. Mol Pharm. 2015;12(12):4542–53.

    Article  CAS  PubMed  Google Scholar 

  16. Keratichewanun S, Yoshihashi Y, Sutanthavibul N, Terada K, Chatchawalsaisin J. An investigation of nifedipine miscibility in solid dispersions using Raman spectroscopy. Pharm Res. 2015;32(7):2458–73.

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Cao F, Zhang C, ** Q. Use of polymer combinations in the preparation of solid dispersions of a thermally unstable drug by hot-melt extrusion. Acta Pharm Sin B. 2013;3(4):263–72.

    Article  Google Scholar 

  18. Rumondor AC, Ivanisevic I, Bates S, Alonzo DE, Taylor LS. Evaluation of drug-polymer miscibility in amorphous solid dispersion systems. Pharm Res. 2009;26(11):2523–34.

    Article  CAS  PubMed  Google Scholar 

  19. Purohit HS, Taylor LS. Phase separation kinetics in amorphous solid dispersions upon exposure to water. Mol Pharm. 2015;12(5):1623–35.

    Article  CAS  PubMed  Google Scholar 

  20. Tian B, Tang X, Taylor LS. Investigating the correlation between miscibility and physical stability of amorphous solid dispersions using fluorescence-based techniques. Mol Pharm. 2016;13(11): 3988–4000.

  21. Six K, Berghmans H, Leuner C, Dressman J, Van Werde K, Mullens J. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion, part II. Pharm Res. 2003;20(7):1047–54.

  22. Kalyanasundaram K, Thomas JK. Solvent-dependent fluorescence of pyrene-3-carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces. J Phys Chem. 1977;81(23):2176–80.

    Article  CAS  Google Scholar 

  23. Kalyanasundaram K, Thomas J. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc. 1977;99(7):2039–44.

    Article  CAS  Google Scholar 

  24. Yang F, Su Y, Zhang J, DiNunzio J, Leone A, Huang C. Rheology guided rational selection of processing temperature to prepare Copovidone–Nifedipine amorphoussolid dispersions via hot melt extrusion (HME). Mol Pharm. 2016;13(10):3494–505.

  25. Brettmann B, Bell E, Myerson A, Trout B. Solid-state NMR characterization of high-loading solid solutions of API and excipients formed by electrospinning. J Pharm Sci. 2012;101(4):1538–45.

    Article  CAS  PubMed  Google Scholar 

  26. Clauss J, Schmidt-Rohr K, Spiess HW. Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polymerica. 1993;44(1):1–17.

    Article  CAS  Google Scholar 

  27. Pham TN, Watson SA, Edwards AJ, Chavda M,Clawson JS, Strohmeier M. Analysis of amorphous solid dispersions using 2D solid-state NMR and 1H T 1 relaxation measurements. Mol Pharm. 2010;7(5):1667–91.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt-Rohr K, Spiess HW. Multidimensional solid-state NMR and polymers. San Diego: Academic Press; 1994.

  29. Wu R-R, Kao H-M, Chiang J-C, Woo EM. Solid-state NMR studies on phase behavior and motional mobility in binary blends of polystyrene and poly (cyclohexyl methacrylate). Polymer. 2002;43(1):171–6.

    Article  Google Scholar 

  30. Spiegel S, Schmidt-Rohr K, Boeffel C, Spiess HW. 1 H spin diffusion coefficients of highly mobile polymers. Polymer. 1993;34(21):4566–9.

    Article  CAS  Google Scholar 

  31. Verreck G, Six K, Van den Mooter G, Baert L, Peeters J, Brewster ME. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion—part I. Int J Pharm. 2003;251(1):165–74.

    Article  CAS  PubMed  Google Scholar 

  32. Bindhu C, Harilal S, Nampoori V, Vallabhan C. Solvent effect on absolute fluorescence quantum yield of rhodamine 6G determined using transient thermal lens technique. Modern Physics Letters B. 1999;13(16):563–76.

    Article  CAS  Google Scholar 

  33. Berendt RT, Sperger DM, Munson EJ, Isbester PK. Solid-state NMR spectroscopy in pharmaceutical research and analysis. TrAC Trends Anal Chem. 2006;25(10):977–84.

    Article  CAS  Google Scholar 

  34. Delaney SP, Nethercott MJ, Mays CJ, Winquist NT, Arthur D, Calahan JL. Characterization of synthesized and commercial forms of magnesium stearate using differential scanning calorimetry, Thermogravimetric analysis, Powder x-ray diffraction, and solid-state NMR spectroscopy. J Pharm Sci. 2016.

  35. Nie H, Su Y, Zhang M, Song Y, Leone A, Taylor LS. Solid-state spectroscopic investigation of molecular interactions between Clofazimine and Hypromellose phthalate in amorphous solid dispersions. Mol Pharm. 2016;13(11):3964–75.

    Article  CAS  PubMed  Google Scholar 

  36. Paudel A, Geppi M, Van den Mooter G. Structural and dynamic properties of amorphous solid dispersions: the role of solid-state nuclear magnetic resonance spectroscopy and Relaxometry. J Pharm Sci. 2014;103(9):2635–62.

    Article  CAS  PubMed  Google Scholar 

  37. Aso Y, Yoshioka S, Miyazaki T, Kawanishi T, Tanaka K, Kitamura S. Miscibility of nifedipine and hydrophilic polymers as measured by 1H-NMR spin-lattice relaxation. Chem Pharm Bull. 2007;55(8):1227–31.

    Article  CAS  PubMed  Google Scholar 

  38. Meng F, Dave V, Chauhan H. Qualitative and quantitative methods to determine miscibility in amorphous drug–polymer systems. Eur J Pharm Sci. 2015;77:106–11.

    Article  CAS  PubMed  Google Scholar 

  39. Yuan X, Sperger D, Munson EJ. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2013;11(1):329–37.

    Article  PubMed  Google Scholar 

  40. Krause S, Iskandar M. Phase separation in styrene-α-methyl styrene block copolymers. Polymer Alloys: Springer; 1977. p. 231–43.

    Google Scholar 

  41. Newman A, Engers D, Bates S, Ivanisevic I, Kelly RC, Zografi G. Characterization of amorphous API: polymer mixtures using X-ray powder diffraction. J Pharm Sci. 2008;97(11):4840–56.

    Article  CAS  PubMed  Google Scholar 

  42. Lodge TP, Wood ER, Haley JC. Two calorimetric glass transitions do not necessarily indicate immiscibility: the case of PEO/PMMA. J Polym Sci B Polym Phys. 2006;44(4):756–63.

    Article  CAS  Google Scholar 

  43. Li N, Taylor LS. Nanoscale infrared, thermal, and mechanical characterization of Telaprevir–polymer miscibility in amorphous solid dispersions prepared by solvent evaporation. Mol Pharm. 2016;13(3):1123–36.

    Article  CAS  PubMed  Google Scholar 

  44. Raina SA, Alonzo DE, Zhang GG, Gao Y, Taylor LS. Using environment-sensitive fluorescent probes to characterize liquid-liquid phase separation in supersaturated solutions of poorly water soluble compounds. Pharm Res. 2015;32(11):3660–73.

    Article  CAS  PubMed  Google Scholar 

  45. Strehmel B, Strehmel V, Younes M. Fluorescence probes for investigation of epoxy systems and monitoring of crosslinking processes. J Polym Sci B Polym Phys. 1999;37(13):1367–86.

    Article  CAS  Google Scholar 

  46. Okay O, Kaya D, Pekcan O. Free-radical crosslinking copolymerization of styrene and divinylbenzene: real time monitoring of the gel effect using fluorescence probe. Polymer. 1999;40(22):6179–87.

    Article  CAS  Google Scholar 

  47. Verin AD, Gusev NB. Ca 2+-induced conformational changes in cardiac troponin C as measured by N-(1-pyrene) maleimide fluorescence. Biochim Biophys Acta Protein Struct Mol Enzymol. 1988;956(2):197–208.

    Article  CAS  Google Scholar 

  48. Bains G, Patel AB, Narayanaswami V. Pyrene: a probe to study protein conformation and conformational changes. Molecules. 2011;16(9):7909–35.

    Article  CAS  PubMed  Google Scholar 

  49. Hayashi Y, Ichimura K. Movement of polymer segments by Exciplex emission of pyrene and N, N-dimethylaniline at the polymer–silica Interface. J Fluoresc. 2003;13(2):129–37.

    Article  CAS  Google Scholar 

  50. Cuniberti C, Perico A. Intramolecular excimer formation in polymers: pyrene labelled polyvinylacetate. Eur Polym J. 1980;16(9):887–93.

    Article  CAS  Google Scholar 

  51. Granados E, González-Benito J, Baselga J, Dibbern-Brunelli D, Atvars T, Esteban I. Phase-separated polymer blends: complementary studies between scanning electron microscopy, epifluorescence microscopy, and fluorescence microspectroscopy. J Appl Polym Sci. 2001;80(7):949–55.

    Article  CAS  Google Scholar 

  52. Anderson VJ, Lekkerkerker HN. Insights into phase transition kinetics from colloid science. Nature. 2002;416(6883):811–5.

    Article  CAS  PubMed  Google Scholar 

  53. Korlach J, Schwille P, Webb WW, Feigenson GW. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci. 1999;96(15):8461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cutts L, Hibberd S, Adler J, Davies M, Melia C. Characterising drug release processes within controlled release dosage forms using the confocal laser scanning microscope. J Control Release. 1996;42(2):115–24.

    Article  CAS  Google Scholar 

  55. Hammond A, Heberle F, Baumgart T, Holowka D, Baird B, Feigenson G. Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proc Natl Acad Sci U S A. 2005;102(18):6320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bacia K, Schwille P, Kurzchalia T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci U S A. 2005;102(9):3272–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA. Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci. 2007;104(9):3165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Verhaegh NA, Av B. Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy. Langmuir. 1994;10(5):1427–38.

    Article  CAS  Google Scholar 

  59. Pethrick R. Polymer physics. Edited by Michael Rubinstein and Ralph H Colby Oxford University Press, Oxford, 2003. ISBN 019852059X. pp 440. Wiley Online Library; 2004.

  60. Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev. 2016;100:27–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

Financial support to HSP from Migliaccio/Pfizer graduate fellowship is greatly acknowledged. The authors would like to thank the New Technology Review and Licensing Committee (NTRLC) at Merck & Co., Inc., Kenilworth, NJ, USA, for financial support. The authors would also like to thank Drs. Ellen C. Minnihan, Wei Xu, Anthony Leone, Timothy Rhodes, Andrew Latham and Christopher J. Welch for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne S. Taylor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purohit, H.S., Ormes, J.D., Saboo, S. et al. Insights into Nano- and Micron-Scale Phase Separation in Amorphous Solid Dispersions Using Fluorescence-Based Techniques in Combination with Solid State Nuclear Magnetic Resonance Spectroscopy. Pharm Res 34, 1364–1377 (2017). https://doi.org/10.1007/s11095-017-2145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2145-z

KEY WORDS

Navigation