Log in

Targeted Paclitaxel Delivery to Tumors Using Cleavable PEG-Conjugated Solid Lipid Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To develop a tumor-targeted drug delivery system based on solid lipid nanoparticles (SLNs) conjugated with the enzymatically cleavable polyethylene glycol (PEG).

Methods

SLNs loaded with paclitaxel (PTX) were prepared using the film ultrasonication method, followed by conjugation with a PEGylated peptide (Pp) that can specifically interact with matrix metalloproteinases (MMPs) that is over-expressed by tumor cells. The physicochemical characteristics of the Pp-PTX-SLNs were studied and the in vitro drug release, cytotoxicity and cell uptake of the formulations were investigated. Furthermore, using an animal model, the pharmacokinetic properties, biodistribution and anti-tumor activity of this system were evaluated.

Results

The resulting Pp-PTX-SLNs penetrated through tumor cells via facilitated uptake mediated by MMPs. The uncleavable Pp’-PTX-SLNs showed a lower cell uptake efficiency, compared with the Pp-PTX-SLNs. In a tumor-bearing mice model, Pp-PTX-SLNs accumulated to a greater extent at the tumor location, persisted longer in blood circulation, and showed lower toxicity than did PTX-SLNs or Taxol®. Most importantly, the mice treated with Pp-PTX-SLNs survived longer than the groups treated with Pp’-PTX-SLNs, PTX-SLNs or Taxol®.

Conclusions

These results suggest that Pp-PTX-SLNs hold promise as a new strategy for paclitaxel chemotherapy, and that Pp-SLNs can be a useful nanocarrier for other chemotherapeutic drugs.

Shielding the SLN with PEG2000-Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-Cys prolongs its circulation time in blood. Cleavage of the PEG chain by tumor-secreted MMPs leads to paclitaxel uptake by target tumor cells. This SLN modification offers a new strategy for paclitaxel chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CE:

Conjugation efficiency

CHO cells:

Chinese hamster ovary cells

DL%:

Drug loading

EE%:

Encapsulation efficiency

EPR:

Enhanced permeability and retention

GMS:

Glyceryl monostearate

HT1080 cells:

Human fibrosarcoma cells

LLC cells:

Lewis lung carcinoma cells

MCT:

Medium-chain triglycerides

MMP:

Matrix metalloproteinase

OA:

Octadecylamine

PEG:

Polyethylene glycol

Pp:

PEG2000-MMP substrate peptide (PEG2000-Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln-Cys)

Pp’:

PEG2000-Ile-Pro-Gly-Gln-Gly-Ala-Leu-Gly-Cys

PTX:

Paclitaxel

RES:

Reticuloendothelial system

SLNs:

Solid lipid nanoparticles

SPC:

Soya phosphatidyl choline

REFERENCES

  1. Rivkin I, Cohen K, Koffler J, Melikhov D, Peer D, Margalit R. Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors. Biomaterials. 2010;31(27):7106–14.

    Article  CAS  PubMed  Google Scholar 

  2. Guo W, Johnson JL, Khan S, Ahmad A, Ahmad I. Paclitaxel quantification in mouse plasma and tissues containing liposome-entrapped paclitaxel by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetics study. Anal Biochem. 2005;336(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  3. Konno T, Watanabe J, Ishihara K. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomed Mater Res A. 2003;65(2):209–14.

    Article  PubMed  Google Scholar 

  4. Yoshizawa Y, Kono Y, Ogawara K, Kimura T, Higaki K. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int J Pharm. 2011;412(1–2):132–41.

    Article  CAS  PubMed  Google Scholar 

  5. Yang T, Choi MK, Cui FD, Kim JS, Chung SJ, Shim CK, et al. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control Release. 2007;120(3):169–77.

    Article  CAS  PubMed  Google Scholar 

  6. Hu FQ, Ren GF, Yuan H, Du YZ, Zeng S. Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel. Colloids Surf B: Biointerfaces. 2006;50(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  7. Rossi J, Giasson S, Khalid MN, Delmas P, Allen C, Leroux JC. Long-circulating poly(ethylene glycol)-coated emulsions to target solid tumors. Eur J Pharm Biopharm. 2007;67(2):329–38.

    Article  CAS  PubMed  Google Scholar 

  8. Li R, Eun JS, Lee MK. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch Pharm Res. 2011;34(2):331–7.

    Article  PubMed  Google Scholar 

  9. Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol. 2007;18(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  10. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113–31.

    Article  CAS  PubMed  Google Scholar 

  11. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83(3):97–111.

    Article  CAS  PubMed  Google Scholar 

  12. Xu H, Deng Y, Chen D, Hong W, Lu Y, Dong X. Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J Control Release. 2008;130(3):238–45.

    Article  CAS  PubMed  Google Scholar 

  13. Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release. 2006;111(3):333–42.

    Article  CAS  PubMed  Google Scholar 

  14. Kurschat P, Zigrino P, Nischt R, Breitkopf K, Steurer P, Klein CE, et al. Tissue inhibitor of matrix metalloproteinase-2 regulates matrix metalloproteinase-2 activation by modulation of membrane-type 1 matrix metalloproteinase activity in high and low invasive melanoma cell lines. J Biol Chem. 1999;274(30):21056–62.

    Article  CAS  PubMed  Google Scholar 

  15. Mansour AM, Drevs J, Esser N, Hamada FM, Badary OA, Unger C, et al. A new approach for the treatment of malignant melanoma: enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res. 2003;63(14):4062–6.

    CAS  PubMed  Google Scholar 

  16. Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X. Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials. 2013;34(12):3020–30.

    Article  CAS  PubMed  Google Scholar 

  17. Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM. Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release. 2007;124(3):163–71.

    Article  CAS  PubMed  Google Scholar 

  18. Shimada K, Matsuo S, Sadzuka Y, Miyagishima A, Nozawa Y, Hirota S, et al. Determination of incorporated amounts of poly(ethylene glycol)-derivatized lipids in liposomes for the physicochemical characterization of stealth liposomes. Int J Pharm. 2000;203(1–2):255–63.

    Article  CAS  PubMed  Google Scholar 

  19. Zeng N, Hu Q, Liu Z, Gao X, Hu R, Song Q, et al. Preparation and characterization of paclitaxel-loaded DSPE-PEG-liquid crystalline nanoparticles (LCNPs) for improved bioavailability. Int J Pharm. 2012;424(1–2):58–66.

    Article  CAS  PubMed  Google Scholar 

  20. Elliott P, Hohmann A, Spanos J. Protease expression in the supernatant of Chinese hamster ovary cells grown in serum-free culture. Biotechnol Lett. 2003;25(22):1949–52.

    Article  CAS  PubMed  Google Scholar 

  21. Goutayer M, Dufort S, Josserand V, Royere A, Heinrich E, Vinet F, et al. Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm. 2010;75(2):137–47.

    Article  CAS  PubMed  Google Scholar 

  22. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997;89(17):1260–70.

    Article  CAS  PubMed  Google Scholar 

  23. Li SD, Huang L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release. 2010;145(3):178–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Skubitz KM. Phase II, trial of pegylated-liposomal doxorubicin (Doxil) in sarcoma. Cancer Investig. 2003;21(2):167–76.

    Article  CAS  Google Scholar 

  25. Kirpotin D, Hong K, Mullah N, Papahadjopoulos D, Zalipsky S. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett. 1996;388(2–3):115–8.

    Article  CAS  PubMed  Google Scholar 

  26. Andreu D, Albericio F, Solé NA, Munson MC, Ferrer M, Barany G. Formation of disulfide bonds in synthetic peptides and proteins. Methods Mol Biol. 1994;35:91–169.

    Google Scholar 

  27. Drummond DC, Zignani M, Leroux J. Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res. 2000;39(5):409–60.

    Article  CAS  PubMed  Google Scholar 

  28. Jackson CJ, Arkell J, Nguyen M. Rheumatoid synovial endothelial cells secrete decreased levels of tissue inhibitor of MMP (TIMP1). Ann Rheum Dis. 1998;57(3):158–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994;370(6484):61–5.

    Article  CAS  PubMed  Google Scholar 

  30. Allen C, Dos Santos N, Gallagher R, Chiu GN, Shu Y, Li WM, et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep. 2002;22(2):225–50.

    Article  CAS  PubMed  Google Scholar 

  31. Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci. 2006;27(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  32. Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007;96(2):203–9.

    Article  CAS  PubMed  Google Scholar 

  33. **ao K, Luo J, Fowler WL, Li Y, Lee JS, **ng L, et al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials. 2009;30(30):6006–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Martins S, Costa-Lima S, Carneiro T, Cordeiro-da-Silva A, Souto EB, Ferreira DC. Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway. Int J Pharm. 2012;430(1–2):216–27.

    Article  CAS  PubMed  Google Scholar 

  35. Xu Z, Gu W, Huang J, Sui H, Zhou Z, Yang Y, et al. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int J Pharm. 2005;288(2):361–8.

    Article  CAS  PubMed  Google Scholar 

  36. Chen DB, Yang TZ, Lu WL, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull. 2001;49(11):1444–7.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Cheng X, Wang Y, Mao L, Wang Y, Huang Q. Preparation of Paclitaxel Nanosuspension and Study of Its Pharmacokinetic and Biodistrabution Behavior in Rats. Chin Pharm J. 2011;9:015.

    CAS  Google Scholar 

  38. Zhang Z, Lee SH, Gan CW, Feng SS. In vitro and in vivo investigation on PLA-TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res. 2008;25(8):1925–35.

    Article  PubMed  Google Scholar 

  39. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12(4):1317–24.

    Article  CAS  Google Scholar 

  40. Park K. To PEGylate or not to PEGylate, that is not the question. J Control Release. 2010;142(2):147–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Jie Zheng and Yu Wan contributed equally to this work. We are grateful for financial support from the University of Central Lancashire, the National Natural Science Foundation of China (No. 81173011) and the National Science & Technology Major Project of China (No. 2011ZX09401-304(4-3)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

(DOCX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Wan, Y., Elhissi, A. et al. Targeted Paclitaxel Delivery to Tumors Using Cleavable PEG-Conjugated Solid Lipid Nanoparticles. Pharm Res 31, 2220–2233 (2014). https://doi.org/10.1007/s11095-014-1320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1320-8

KEY WORDS

Navigation