Log in

Self-Assembled Polymersomes Conjugated with Lactoferrin as Novel Drug Carrier for Brain Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To develop a novel brain drug delivery system based on self-assembled poly(ethyleneglycol)-poly (D,L-lactic-co-glycolic acid) (PEG-PLGA) polymersomes conjugated with lactoferrin (Lf-POS). The brain delivery properties of Lf-POS were investigated and optimized.

Method

Three formulations of Lf-POS, with different densities of lactoferrin on the surface of polymersomes, were prepared and characterized. The brain delivery properties in mice were investigated using 6-coumarin as a fluorescent probe loaded in Lf-POS (6-coumarin-Lf-POS). A neuroprotective peptide, S14G-humanin, was incorporated into Lf-POS (SHN-Lf-POS); a protective effect on the hippocampuses of rats treated by Amyloid-β25-35 was investigated by immunohistochemical analysis.

Results

The results of brain delivery in mice demonstrated that the optimized number of lactoferrin conjugated per polymersome was 101. This obtains the greatest blood–brain barrier (BBB) permeability surface area(PS) product and percentage of injected dose per gram brain (%ID/g brain). Immunohistochemistry revealed the SHN-Lf-POS had a protective effect on neurons of rats by attenuating the expression of Bax and caspase-3 positive cells. Meanwhile, the activity of choline acetyltransferase (ChAT) had been increased compared with negative controls.

Conclusion

These results suggest that lactoferrin functionalized self-assembled PEG-PLGA polymersomes could be a promising brain-targeting peptide drug delivery system via intravenous administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Huynh GH, Deen DF, Szoka Jr FC. Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release. 2006;110:236–59.

    Article  PubMed  CAS  Google Scholar 

  2. Cornford EM, Cornford ME. New systems for delivery of drugs to the brain in neurological disease. Lancet Neurol. 2002;1:306–15.

    Article  PubMed  CAS  Google Scholar 

  3. Pardridge WM. Drug and gene targeting to the brain via blood–brain barrier receptor-mediated transport systems. International Congress Series. 2005;1277:49–62.

    Article  CAS  Google Scholar 

  4. Smith QR. Carrier-mediated transport to enhance drug delivery to brain. International Congress Series. 2005;1277:63–74.

    Article  CAS  Google Scholar 

  5. Spencer BJ, Verma IM. Targeted delivery of proteins across the blood–brain barrier. PNAS. 2007;104:7594–9.

    Article  PubMed  CAS  Google Scholar 

  6. Witt KA, Davis TP. CNS drug delivery: opioid peptides and the blood-brain barrier. AAPS J. 2006;8:76–88.

    Article  Google Scholar 

  7. Visser CC, Voorwinden H, Crommelin DJA, Danhof M, Boer AG. Characterization and modulation of the transferrin receptor on brain capillary endothelial cells. Pharm Res. 2004;21:761–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sarzehi S, Chamani J. Investigation on the interaction between tamoxifen and human holo-transferrin: determination of the binding mechanism by fluorescence quenching, resonance light scattering and circular dichroism methods. Int J Biol Macromol. 2010;47:558–69.

    Article  PubMed  CAS  Google Scholar 

  9. Chamani J, Vahedian-Movahed H, Saberi MR. Lomefloxacin promotes the interaction between human serum albumin and transferrin: a mechanistic insight into the emergence of the antibiotic’s side effects. J Pharm Biomed Anal. 2011;55:114–24.

    Article  PubMed  CAS  Google Scholar 

  10. Boado RJ, Zhang YF, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng. 2007;96:381–91.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki YA, Lopez V, Lonnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. 2005;22:2560–75.

    Article  Google Scholar 

  12. Ji B, Maeda J, Makoto H, Higuchi M, Inoue K, Akita H, et al. Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci. 2006;78:851–5.

    Article  PubMed  CAS  Google Scholar 

  13. Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci. 2007;32:1054–82.

    Article  PubMed  CAS  Google Scholar 

  14. Modi G, Pillay V, Choonara YE, Ndesendo VM, du Toit LC, Naidoo D. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol. 2009;88:272–85.

    Article  PubMed  CAS  Google Scholar 

  15. Pardridge WM. Molecular Trojan horses for blood–brain barrier drug delivery. Curr Opin Pharmacol. 2006;6:494–500.

    Article  PubMed  CAS  Google Scholar 

  16. Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297:967–73.

    Article  PubMed  CAS  Google Scholar 

  17. Meng FH, Engbers HMG, Feigen J. Biodegradable polymer vesicles as a basis for artificial cells: encapsulation, release and targeting. J Control Release. 2005;101:187–98.

    Article  PubMed  CAS  Google Scholar 

  18. Ahmed F, Discher DE. Self-porating polymersomes of PEG-PLA and PEG-PCl: hydrolysis triggered controlled release vesicles. J Control Release. 2004;96:37–53.

    Article  PubMed  CAS  Google Scholar 

  19. Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymer vesicles loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release. 2006;116:150–8.

    Article  PubMed  CAS  Google Scholar 

  20. Mamiya T, Ukai M. [Gly14]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol. 2001;134:1597–9.

    Article  PubMed  CAS  Google Scholar 

  21. Avgoustakis K. Pegylated poly(Lactide) and poly(Lactide-Co-Glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Deliv. 2004;1:321–33.

    Article  PubMed  CAS  Google Scholar 

  22. Abraham SA, Edwards K, Karlsson G, Hudon N, Mayer LD, Bally MB. An evaluation of transmembrane ion gradient-mediated encapsulation of topotecan within liposomes. J Control Release. 2004;96:449–61.

    Article  PubMed  CAS  Google Scholar 

  23. Choucair A, Soo PL, Eisenberg A. Active loading and tunable release of doxorubicin from block copolymer vesicles. Langmuir. 2005;21:9308–13.

    Article  PubMed  CAS  Google Scholar 

  24. Wu J, Eisenberg A. Proton diffusion across membranes of vesicles of poly(styrene-b-acrylic Acid) diblock copolymers. JACS. 2006;128:2880–4.

    Article  CAS  Google Scholar 

  25. Huwyler J, Wu DF, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. PNAS. 1996;93:14164–9.

    Article  PubMed  CAS  Google Scholar 

  26. Lu W, Wan J, She ZJ, Jiang XG. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118:38–53.

    Article  PubMed  CAS  Google Scholar 

  27. Olivier JC, Huertas R, Lee HJ, Calon F, Pardridge WM. Synthesis of pegylated immunonanoparticles. Pharm Res. 2002;19:1137–43.

    Article  PubMed  CAS  Google Scholar 

  28. Taylor S, Brock J, Kruger C. Safety determination for the use of bovine milkderived lactoferrin as a component of an antimicrobial beef carcass spray. Regul Toxicol Pharm. 2004;39:12–24.

    Article  CAS  Google Scholar 

  29. Shard AG, Davies MC, Li YX, Volland C, Kissel T. XPS and SSIMS analysis revealing surface segregation and short-range order in solid films of block copolymers of PEO and PLGA. Macromolecules. 1997;30:3051–7.

    Article  CAS  Google Scholar 

  30. Novotná K, Havliš J, Havel J. Optimisation of high performance liquid chromatography separation of neuroprotective peptides: fractional experimental designs combined with artificial neural networks. J Chromatogr A. 2005;1096:50–7.

    Article  PubMed  Google Scholar 

  31. Thom SR, Bhopale VM, Fisher D, Zhang J, Gimotty P. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proc Natl Acad Sci. 2004;101:13660–5.

    Article  PubMed  CAS  Google Scholar 

  32. Alric L, Orfila C, Carrere N, Beraud M, Carrera G, Lepert JC, et al. Reactive oxygen intermediates and eicosanoid production by kupffer cells and infiltrated macrophages in acute and chronic liver injury induced in rats by CCl4. Inflamm Res. 2000;49:700–7.

    Article  PubMed  CAS  Google Scholar 

  33. Kim DH, Kim S, Jeon SJ, Son KH, Lee S, Yoon BH, et al. The effects of a-cute and repeated oroxylin a treatments on Aβ25-35 induced memory impairment in mice. Neuropharmacology. 2008;55:639–47.

    Article  PubMed  CAS  Google Scholar 

  34. Tajima H, Kawasumi M, Chiba T, Yamada M, Yamashita K, Nawa M, et al. A humanin derivative, S14G-HN, prevents amyloid–induced memory impairment in mice. J Neurosci Res. 2005;79:714–23.

    Article  PubMed  CAS  Google Scholar 

  35. Pardridge>Pardridge WM. Molecular Trojan horses for blood–brain barrier drug delivery. Curr Opin Pharmacol. 2006;6:494–500.

    Article  PubMed  CAS  Google Scholar 

  36. Pang ZQ, Lu W, Gao HL, Hu KL, Chen J, Zhang CL, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release. 2008;128:120–7.

    Article  PubMed  CAS  Google Scholar 

  37. Nittaa A, Itoha A, Hasegawaa T, Nabeshima T. β-Amyloid protein-induced Alzheimer’s disease animal model. Neurosci Lett. 1994;170:63–6.

    Article  Google Scholar 

  38. Su JH, Deng G, Cotman CW. Bax protein expression is increased in Alzheimer’s brain: correlations with DNA damage, Bcl-2 expression, and brain pathology. J Neuropath Exp Neur. 1997;56:86–93.

    Article  PubMed  CAS  Google Scholar 

  39. MacGibbon GA, Lawlor PA, Sirimanne ES, Walton MR, Connor B, Young D, et al. Bax expression in mammalian neurons undergoing apoptosis, and in Alzheimer’s disease hippocampus. Brain Res. 1997;750:223–34.

    Article  PubMed  CAS  Google Scholar 

  40. Grossoa CA, Tamb J, Royb S, Xanthoudakisb S, Costaa DD, Nicholsonb DW, et al. Caspase-3 cleaved spectrin colocalizes with neurofilament-immunoreactive neurons in Alzheimer’s disease. Neuroscience. 2006;141:863–74.

    Article  Google Scholar 

  41. Guo B, Zhai DY, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature. 2003;423:456–61.

    Article  PubMed  CAS  Google Scholar 

  42. DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol. 2002;51:145–5.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by National Basic Research Program of China (973 Program 2007CB935800), National Science and Technology Major Project (2009ZX09310-006), National Natural Science Foundation of China (30762544), and Postdoctoral Science Foundation of China (20060390144). The authors acknowledge Dr. Kunpeng Li, School of Life Sciences, Zhongshan University, China, for his precious help on Cryo-TEM of polymersomes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nguo Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Pang, Z., Lu, W. et al. Self-Assembled Polymersomes Conjugated with Lactoferrin as Novel Drug Carrier for Brain Delivery. Pharm Res 29, 83–96 (2012). https://doi.org/10.1007/s11095-011-0513-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0513-7

KEY WORDS

Navigation