Log in

The Role of Transport Phenomena and Modeling in the Development of Thermal Plasma Technology

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A brief overview is presented of the principal areas where thermal plasmas had a significant technological impact over the past century. This is followed by an analysis of the specific role played by modelling and studies of transport phenomena under plasma conditions for three specific examples. The first dealing with the development of inductively coupled plasma sources. The following two examples deals with process development for the in-flight melting and spheroidization of powders, and the synthesis of nano-powders. Emphasis is placed on the critical role of plasma–particle interactions under dense loading conditions. A proposal is made for a relatively simple thermodynamic model which can be used for the estimation of the theoretical limits for the processing rates possible with different powders in each of these two cases. The model takes into account radiative energy losses from the surface of the particles and from the formed vapor cloud in the plasma, as well as the residual energy in the gases at the exit of the plasma reactor which are not accessible for process needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Stokes CS (1969) Chemistry in high temperature plasma jets. Adv Chem Ser 80:390–405

    Article  Google Scholar 

  2. Vurzel FB, Polak LS (1970) Plasma chemical technology—the future of the chemical industry. Ind Eng Chem 62:8–22

    Article  CAS  Google Scholar 

  3. Rykalin NN (1976) Plasma engineering in metallurgy and inorganic materials technology. Pure Appl Sci 48:179–194

    CAS  Google Scholar 

  4. Barcza NA (1986) The development of large scale thermal plasma systems. J South Afr Inst Min Metall 86(8):317–333

    CAS  Google Scholar 

  5. Barza NA, Curr TR, Jones TR (1990) Metallurgy of the open-bath plasma processes. Pure Appl Chem 62(9):1761–1772

    Google Scholar 

  6. Feinman J (1987) Plasma technology in metallurgical processing. Iron and Steel Society, Warrendale

    Google Scholar 

  7. MacRae DR, Cowx M (1988) Plasma furnace treatments of electric arc furnace dust as demonstrated by Bethlehem-Tetronics. In: EPRI-CMP 88-2 report

  8. Neuschutz D (1992) Plasma applications in process metallurgy. High Temp Chem Process 1:511–525

    Google Scholar 

  9. Jones RT, Curr TR (2006) Pyrometallurgy at Mintek. South African Institute of Mining and Metallurgy, Johannesburg

    Google Scholar 

  10. Mishra S (2012) Thermal plasma application in metallurgy plasma processing of materials. Lambert Academic Publishing, Germany, p 148

    Google Scholar 

  11. Moore C, Heanly CP, Cowx P (1989) Plasma tundish heating as an integral part of continuous casting. Steel Times Int 13(2):44–46

    Google Scholar 

  12. Neuschütz D (1996) Arc heating in the tundish with a graphite electrode in comparison to metallic plasma torch. In: Steel research no. 11

  13. Neuschütz D (2000) Metallurgical applications of high power arc heating systems. High Temp Chem Process 4:309–321

    Google Scholar 

  14. Esser B, Gulhan A (1998) Flow field characterization of DLR’s arc heated facilities L2K and L3K. In: Proceeding of the 3rd European symposium. On aerothermodynamics for space vehicles, November 24–26 (1998), ESTEC, Noordwijk, The Netherlands, ESA SP-426, Dec

  15. Auweter-Kurz M, Wegmann T (1999) Overview of IRS plasma wind tunnel facilities. In: TRO educational note 8, Measurement techniques for high enthalpy and plasma flows, course held at the Von Karman Institute for fluid dynamics, Belgium October 25–29

  16. Bletzinger P, Ganguly BN, Van Wei D, Garscadden A (2005) Plasmas in high speed aerodynamics, a topical review. J Phys D Appl Phys 38:R33–R57

    Article  CAS  Google Scholar 

  17. Lenzner S, Auweter-Kurtz M, Heiermann J, Sleziona PC (1998) Energy distribution in an inductively heated plasma wind tunnel for re-entry simulation. In: AIAA-98-2937, 7th AIAA#ASME joint thermos-physics and heat transfer conference Albuquerque, NM, June 15–18, 1998

  18. Nemchinsky VA, Severance WS (2006) What we know and what we do not know about plasma cutting. J Phys D Appl Phys 39:R423–R438

    Article  CAS  Google Scholar 

  19. Finch R (2007) Welder’s handbook, a guide to plasma cutting, oxyacetylene, ARC, MIG and TIG welding. Revised HP1513

  20. Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2009) High-speed imaging in plasma arc cutting: a review and new developments. Plasma Sour Sci Technol 18:023001

    Article  Google Scholar 

  21. Hirata Y (2011) Plasma physics promotes progress of arc welding processes. In: 3rd international round table on thermal plasmas 31st Oct.–Nov. 4th. Glenburn Lodge, Johannesburg

  22. Davies AC (2003) The science and practice of welding. Cambridge University Press, Cambridge. ISBN 0-521-43566-8

    Google Scholar 

  23. American Welding Society (2004) Welding handbook, welding processes, part 1. American Welding Society, Miami. ISBN 0-87171-729-8

    Google Scholar 

  24. Wilden J, Bergmann JP, Frank H (2006) Plasma transferred arc welding—modeling and experimental optimization. J Therm Spray Technol 15(4):779–784

    Article  Google Scholar 

  25. Murphy AB, Tanaka M, Tashiro S, Sato T, Lowke JJ (2009) A computational investigation of the effectiveness of different shielding gas mixtures for arc welding. J Phys D Appl Phys 42:115205

    Article  Google Scholar 

  26. Murphy AB (2010) The effects of metal vapor in arc welding. J Phys D Appl Phys 43:434001

    Article  Google Scholar 

  27. Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Lowke JJ, Ostrikov K (2010) Modelling of arc welding: the importance of including the arc plasma in the computational domain. Vacuum 85:579–584

    Article  CAS  Google Scholar 

  28. Murphy AB (2011a) Understanding the arc plasma in arc welding: recent progress and outstanding issues. In: 3rd round table on thermal 31st. Oct.–4th. Nov. Glenburn Lodge, Johannesburg

  29. Murphy AB (2011b) A self-consistent three-dimensional model of the arc, electrode and weld pool in gas–metal arc welding. J Phys D Appl Phys 44:194009

    Article  Google Scholar 

  30. Fauchais P, Heberlein JVR, Boulos M (2014) Thermal spray fundamentals, from powder to part. Springer, New York

    Book  Google Scholar 

  31. Fauchais P, Vardelle A, Dussoubs B (2001) Quo vadis thermal spraying. J Thermal Spray Technol 10:44–66

    Article  CAS  Google Scholar 

  32. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:R86–R108

    Article  CAS  Google Scholar 

  33. Fauchais P, Montavon G, Bernard G (2010) From powders to thermally sprayed coatings. J Thermal Spray Technol 19:56–80

    Article  CAS  Google Scholar 

  34. Eschenbach RC (1989) Use of plasma torches for melting special metals and for destroying and stabilizing hazardous wastes. In: Proceedings of workshop industrial. Plasma Applications (Pugnochiuso)

  35. Drouet MG (1992) High temperature processes for industrial waste treatment and valorization. In: Bonizzoni G et al (ed) Proceedings of international workshop on plasma technologies for hazardous waste destruction, Como, Italy. Editrice Compositori, Bologna, Italy, pp 77–88

  36. Heberlein J (1992) Thermal plasmas for the destruction of hazardous wastes. In: Bonizzoni et al G (ed) Proceedings of plasma technologies for hazardous waste destruction, Como, Italy. Editrice Compositori, Bologna, pp 59–76

  37. Murphy AB, McAllister T (2001) Modeling of the physics and chemistry of thermal plasma waste destruction. Phys Plasmas 8(5):2565–2571

    Article  CAS  Google Scholar 

  38. Heberlein J, Murphy AB (2008) Thermal plasma waste treatment: a review. J Phys D Appl Phys 41:053001

    Article  Google Scholar 

  39. Waldie B (1972) Review of recent work on the processing of powders in high temperature plasmas, part I processing and economic studies. Chem Eng 259:92

    Google Scholar 

  40. Waldie B (1972) Review of recent work on the processing of powders in high temperature plasmas, part II particle dynamics, heat transfer and mass transfer. Chem Eng 259:188

    Google Scholar 

  41. Boulos MI (1985) The inductively coupled R.F. (radio frequency) plasma. Pure Appl Chem 57:1321–1352

    Article  CAS  Google Scholar 

  42. Ye R, Ishigaki T, Jurewicz J, Proulx P, Boulos’ MI (2004) In-flight spherodization of alumina powders in Ar-H2 and Ar-N2 induction plasmas. Plasma Chem Plasma Process 24(4):555–571

    Article  CAS  Google Scholar 

  43. Boulos MI (2002) Induction plasma synthesis and processing of nanostructured materials. In: IMP2002, Niyagi, Japan, November 27–29

  44. Boulos MI (2012) New frontiers in thermal plasmas, from space to nano-materials. Nucl Eng Technol 44:1–7

    Article  CAS  Google Scholar 

  45. Guo J, **aobao F, Dolbec R, Xue S, Jurewicz J, Boulos M (2010) Development of nanopowder synthesis using induction plasmas. Plasma Sci Technol 12(2):188

    Article  CAS  Google Scholar 

  46. Mendoza Gonzalez NY, El Morsli M, Proulx P (2008) Production of nanoparticles in thermal plasmas: a model including evaporation, nucleation, condensation, and fractal aggregation. J Therm Spray Technol 17:533–550

    Article  Google Scholar 

  47. Shigeta M, Murphy AB (2011) Thermal plasmas for nanofabrication. J Phys D Appl Phys 44:174025

    Article  Google Scholar 

  48. Reed TB (1961) Induction coupled plasma torch. J Appl Phys 32:821–824

    Article  CAS  Google Scholar 

  49. Dresvin SV (ed) (1971) Physics and technology of low temperature plasmas. Iowa State University, 1977

  50. Thorpe ML, Scammon LW (1968) Induction plasma heating: high power, low frequency operation and pure hydrogen heating. In: NASA 3-9375, 1968

  51. Yoshida T, Nakagawa K, Harada T, Akashi K (1981) New design of a radio frequency plasma torch. Plasma Chem Plasma Process 1:113–129

    Article  CAS  Google Scholar 

  52. Yoshida T, Tawi T, Nishimura H, Akashi K (1983) Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys 54:640–646

    Article  CAS  Google Scholar 

  53. Yoshida T, Tani T, Nishimura H, Akashi K (1983) Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys 54:640–646

    Article  CAS  Google Scholar 

  54. Boulos MI (1976) Flow temperature field in the fire ball of an inductively coupled plasma. IEEE Trans Plasma Sci PS-4:28–39

    Article  Google Scholar 

  55. Boulos MI (1978) Heating of powders in the fire ball of an induction plasma. IEEE Trans Plasma Sci PS-6:93–106

    Article  Google Scholar 

  56. Boulos MI, Jurewicz J (1993) High performance induction plasma torch with a water-cooled ceramic confinement tube. US Patent, 5,200,595

  57. Boulos MI, Jurewicz J (1996) Liquid film stabilized induction plasma torch. US Patent, 5,560,844

  58. Boulos MI, Jurewicz J (2004) Multi-coil induction plasma torch for solid state power supply. US Patent 6,693,253, Feb 17th

  59. Boulos MI, Jurewicz J (2005) Multi-coil induction plasma torch for solid state power supply. US patent 6,919,527 July 19th

  60. Chen K, Boulos MI (1992) Turbulence in induction plasma modeling. J Phys D Appl Phys 27:946–952

    Article  Google Scholar 

  61. El-Hage M, Mostaghimi J, Boulos MI (1989) A turbulent flow model for the R.F. inductively coupled plasma. J Appl Phys 65:4178–4185

    Article  Google Scholar 

  62. Merkhouf A, Boulos MI (1998) Integrated model for the radio-frequency induction plasma torch and power supply. Plasma Sour Sci Technol 7:599–606

    Article  Google Scholar 

  63. Merkhouf A, Boulos MI (2000) Distributed energy analysis for an integrated radio frequency induction plasma system. J Phys D Appl Phys 33:1581–1587

    Article  CAS  Google Scholar 

  64. Mostaghimi J, Proulx P, Boulos MI (1984) Parametric study of the flow and temperature fields in inductively coupled plasma torch. Plasma Chem Plasma Process 4:199–217

    Article  CAS  Google Scholar 

  65. Mostaghimi J, Proulx P, Boulos MI (1987) A two-temperature model of the inductively coupled R.F. plasma. J Appl Phys 61:1753–1760

    Article  CAS  Google Scholar 

  66. Mostaghimi J, Boulos MI (1989) Two-dimensional electromagnetic field effects in inductively coupled plasmas. Plasma Chem Plasma Process 9:25–44

    Article  Google Scholar 

  67. Mostaghimi J, Boulos MI (1990) Effect of frequency on local thermodynamic equilibrium conditions in an inductively coupled argon plasma at atmospheric pressure. J Phys D Appl Phys 68:2643–2648

    Article  Google Scholar 

  68. Proulx P, Mostaghimi J, Boulos MI (1985) Plasma-particle interaction effects in induction plasma modelling under dense loading conditions. Int J Heat Mass Transf 28:1327–1336

    Article  CAS  Google Scholar 

  69. Proulx P, Mostaghimi J, Boulos MI (1987) Heating of powders in an R.F. inductively coupled plasma under dense loading conditions. J Plasma Chem Plasma Process 7:29–53

    Article  CAS  Google Scholar 

  70. Chen X, Merkhouf A, Boulos MI (1996) Preliminary study of the 3-equation turbulence model of an R.F. plasma torch. In: Proceedings of the 3rd Asia-Pacific conference on plasma science and technology, vol 1, Tokyo, pp 71–76

  71. Selezneva S, Sember V, Gravelle DV, Boulos MI (2002) Spectroscopic validation of the supersonic plasma jet model. J Phys D Appl Phys 35:1338–1349

    Article  CAS  Google Scholar 

  72. Xue S, Proulx P, Boulos MI (2001) Extended-field electromagnetic model for the inductively coupled plasma. J Phys D Appl Phys 34:1897–1906

    Article  CAS  Google Scholar 

  73. Xue S, Proulx P, Boulos MI (2003) Effect of coil angle in an inductively couple plasma torch: a novel two-dimensional model. Plasma Chem Plasma Process 23:245–263

    Article  CAS  Google Scholar 

  74. Ye R, Proulx P, Boulos MI (1999) Turbulence phenomena in the RF induction plasma torch. Int J Heat Mass Transf 42:1585–1595

    Article  Google Scholar 

  75. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2003) Three-dimensional modelling of inductively coupled plasma torches. Eur Phys J D 22:119–125

    Article  CAS  Google Scholar 

  76. Bernardi D, Colombo V, Ghedini E, Mentrelli A, Trombetti T (2004) 3-D numerical simulation of fully-coupled particle heating in ICPTs. Eur Phys J D 28:423–433

    Article  CAS  Google Scholar 

  77. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2005) 3-D turbulent modelling of an ICPT with detailed gas injection section. IEEE Trans Plasma Sci 33:426–427

    Article  Google Scholar 

  78. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2005) Three-dimensional modelling of inductively coupled plasma torches. Pure Appl Chem 77:359–372

    Article  CAS  Google Scholar 

  79. Colombo V, Ghedini E (2007) 3-D modeling of ICP torches. High Temp Mater Proc 11:283–296

    Article  CAS  Google Scholar 

  80. Colombo V, Ghedini E, Sanibondi P (2010) A three-dimensional investigation of the effects of excitation frequency and sheath gas mixing in an atmospheric-pressure inductively coupled plasma system. J Phys D Appl Phys 43(105202):1–14

    Google Scholar 

  81. Colombo V, Ghedini E, Sanibondi P (2010) Three-dimensional investigation of particle treatment in a RF thermal plasma with reaction chamber. Plasma Sources Sci Technol 19(065024):1–13

    Google Scholar 

  82. Colombo V, Concetti A, Ghedini E, Gherardi M, Sanibondi P (2011) 3-D time-dependent large eddy simulation of turbulent flows in an inductively coupled thermal plasma torch with reaction chamber. IEEE Trans Plasma Sci 39:2894–2895

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank in particular the many graduate students, post-doctoral research fellows, research associates and colleagues who contributed through my career to this research program at the University of Sherbrooke. The financial supported by the National Sciences and Engineering Research Council of Canada and the Ministry of Education of the Province of Quebec are gratefully acknowledged. The reported mathematical modelling work was carried out by Dr Siwen Xue, and the experimental results were obtained by the research team, on the pilot R&D facility at Tekna plasma Systems Inc. whose contributions is gratefully acknowledged. Many thanks are due to Professor Jurewicz, for his time in reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulos, M.I. The Role of Transport Phenomena and Modeling in the Development of Thermal Plasma Technology. Plasma Chem Plasma Process 36, 3–28 (2016). https://doi.org/10.1007/s11090-015-9660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9660-7

Keywords

Navigation