Log in

Controlled Synthesis of β-SiC Nanopowders with Variable Stoichiometry Using Inductively Coupled Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In the growing field of nanomaterials, SiC nanoparticles arouse interest for numerous applications. The inductively coupled plasma (ICP) technique allows obtaining large amount of SiC nanopowders from cheap coarse SiC powders. In this paper, the effects on the SiC structure of the process pressure, the plasma gas composition, and the precursor nature are addressed. The powders were characterized by X-ray diffraction (XRD), Raman and fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and high resolution electron microscopy (HREM), chemical analyses, BET and photon correlation spectroscopy (PCS) measurements. Whatever the precursor (α- or β-SiC), the nanoparticles were crystallised in the cubic β-SiC phase, with average sizes in the 20–40 nm range. Few residual grains of precursor were observed, and the decarburization due to the reductive Ar–H2 plasma lead to the appearance of Si nanograins. The stoichiometry of the final product was found to be controllable by the process pressure and the addition of methane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vassen R, Stöver D (1997) Phil Mag B 76:585

    Article  Google Scholar 

  2. Vassen R, Kaiser A, Stöver D (1996) J Nucl Mater 233–237:708

    Article  Google Scholar 

  3. Donato A, Borsella E, Botti S, Martelli S, Nannetti CA, Mancini MR, Morjan IJ (1996) Nucl Mater 233–237:814

    Article  Google Scholar 

  4. Chae KW, Niihara K, Kim DY (1995) J Mat Sci Lett 14:1332

    Article  Google Scholar 

  5. Endo H, Ueki M, Kubo HJ (1991) Mat Sci 26:3769

    Article  ADS  Google Scholar 

  6. Vassen R, Stöver D (2001) Mat Sci Eng A 301:59

    Article  Google Scholar 

  7. Fu Z, Ning J, Yang B, Wu W, Pan H, Xu P (2003) Mater Lett 57:1910

    Article  Google Scholar 

  8. Ledoux MJ, Pham-Huu C (2001) CaTTech 5:226

    Article  Google Scholar 

  9. Guichelaar PJ (1997) In: Carbide, nitride and boride materials synthesis and processing. Chapman and Hall

  10. Setiowati U, Kimura SJ (1997) Am Ceram Soc 80:757

    Article  Google Scholar 

  11. Hatakeyama F, Kanzaki SJ (1990) Am Ceram Soc 73:2107

    Article  Google Scholar 

  12. Seong IS, Kim CH (1993) J Mater Sci 28:3277

    Article  ADS  Google Scholar 

  13. Klein S, Winterer M, Hahn H (1998) Chem Vapor Depos 4:143

    Article  Google Scholar 

  14. Chen LD, Goto T, Hirai TJ (1989) Mater Sci 24:3824

    Article  ADS  Google Scholar 

  15. Yamada O, Miyamoto Y, Koizumi MJ (1986) Mater Res 1:275

    Article  ADS  Google Scholar 

  16. Satapathy LN, Ramesh PD, Agrawal D, Roy R (2005) Mater Res Bull 40:1871

    Article  Google Scholar 

  17. Suyama Y, Marra RM, Haggerty JS, Bowen HK (1985) Am Ceram Soc Bull 64:1356

    Google Scholar 

  18. Cauchetier M, Croix O, Luce M (1998) Adv Ceram Mat 3:548

    Google Scholar 

  19. Ando Y, Ohkohchi M, Uyeda R (1980) Jpn J Appl Phys 19:693

    Article  ADS  Google Scholar 

  20. Inoue Y, Nariki Y, Tanaka KJ (1989) Mater Sci 24:3819

    Article  ADS  Google Scholar 

  21. Hollabaugh CM, Hull DE, Newkirk LR, Petrovic JJ (1983) J Mater Sci 18:3190

    Article  ADS  Google Scholar 

  22. Kameyama T, Sakanaka K, Motoe A, Tsunoda T, Nakanaga T, Wakayama NI, Takeo H, Fukuda K (1990) J Mater Sci 25:1058

    Google Scholar 

  23. Guo JY, Gitzhofer F, Boulos MI (1995) J Mater Sci 30:5589

    Article  ADS  Google Scholar 

  24. Kong P, Pfender E (1987) Langmuir 3:259

    Article  Google Scholar 

  25. Lee HJ, Eguchi K, Yoshida T (1990) J Am Ceram Soc 73:3356

    Article  Google Scholar 

  26. Leparoux M, Schreuders C, Shin JW, Siegmann S (2005) Adv Eng Mater 7:349

    Article  Google Scholar 

  27. Shin JW, Miyazoe H, Leparoux M, Siegmann S, Dorier JL, Hollenstein C (2006) Plasma Sources Sci Technol 15:441

    Article  ADS  Google Scholar 

  28. Nakashima S, Harima H (1997) Phys Stat Sol A 162:39

    Article  ADS  Google Scholar 

  29. Burton JC, Sun L, Long FH, Feng ZC, Ferguson T (1999) Phys Rev B 59:7282

    Article  ADS  Google Scholar 

  30. Papoular R, Cauchetier M, Begin S, Le Caer G (1998) Astron Astrophys 329:1035

    ADS  Google Scholar 

  31. Boulos MH, Fauchais P, Pfender E (1994) In: Thermal plasmas—fundamentals and applications. Plenum Press editors

  32. Colder H, Rizk R, Morales M, Marie P, Vicens J, Vickridge I (2005) J Appl Phys 98:024313

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Schreuders, G. Bürki, and M. Aeberhard (EMPA Thun) for modelling, SEM observations, and XRD characterizations respectively, W. Graehlert (FhG-IWS, Dresden) for Raman spectroscopy, J. Glory and A. Habert (LFP Saclay) for PCS and BET measurements respectively, O. Syrdal (Saint-Gobain) for the SiC microscale powder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Leconte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leconte, Y., Leparoux, M., Portier, X. et al. Controlled Synthesis of β-SiC Nanopowders with Variable Stoichiometry Using Inductively Coupled Plasma. Plasma Chem Plasma Process 28, 233–248 (2008). https://doi.org/10.1007/s11090-007-9072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9072-4

Keywords

Navigation