Log in

Cyclic Oxidation and Hot Corrosion Behavior of Y/Cr-Modified Aluminide Coatings Prepared by a Hybrid Slurry/Pack Cementation Process

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Y/Cr-modified aluminide coatings were prepared on a Ni-base superalloy K417G using a hybrid slurry/pack cementation process. The coatings consisted of a NiAl layer with dissolved Cr and Y. The microstructures and high temperature corrosion behavior of the coatings were characterized using SEM/EDS, XRD, EPMA and SIMS. Cyclic oxidation tests at 1000 °C for 200 h were carried out in air. The results indicated that specimens coated by either the Y/Cr-modified aluminide coatings or the simple aluminide coatings exhibited better oxidation resistances than the cast alloy. The Y/Cr-modified aluminide coatings possessed lower oxidation rates and better degradation resistance than the simple aluminide coatings during the oxidation tests. Furthermore, the alumina scales formed on the Y/Cr-modified aluminide coatings were considerably more adherent than those on the simple aluminide coatings during the thermal cycling. The hot corrosion tests consisted of applying a 25 wt% K2SO4 +75 wt% Na2SO4 salt mixture to the specimens and exposing at 900 °C. The Y/Cr-modified aluminide coatings showed the longest service life compared with the cast alloy and aluminide coatings, which suffered significant sulfur attack. After 200 h, the Y/Cr-modified aluminide coatings were still protective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Coddet, Materials Science Form 461, 193 (2004).

    Article  Google Scholar 

  2. W. Brandl, H. J. Grabke and D. Toma, Surface and Coatings Technology 86–87, 41 (1996).

    Article  Google Scholar 

  3. Y. N. Wu, G. Zhang, Z. C. Feng, and B. C. Zhang, Surface and Coatings Technology 138, 56 (2001).

    Article  CAS  Google Scholar 

  4. Y. J. Zhang, X. F. Sun, and Y. C. Zhang, Materials Science and Engineering A 360, 65 (2003).

    Article  Google Scholar 

  5. X. Ren and F. H. Wang, Surface and Coatings Technology 201, 30 (2006).

    Article  CAS  Google Scholar 

  6. B. Wang, J. Gong, A. Y. Wang, and C. Sun, Surface and Coatings Technology 149, 70 (2002).

    Article  CAS  Google Scholar 

  7. W. D. Costa, B. Gleeson, and D. J. Young, Journal of Chemical Society 141, 2690 (1994).

    Google Scholar 

  8. W. D. Costa, B. Gleeson, and D. J. Young, Surface and Coatings Technology 88, 165 (1996).

    Article  Google Scholar 

  9. Z. D. **ang, J. S. Burnell Grray, and P. K. Datta, Surface Engineering 17, 287 (2001).

    Article  CAS  Google Scholar 

  10. J. Jedlinski, K. Godlewski, and S. Mrowec, Material Science and Engineering A121, 5392 (1989).

    Google Scholar 

  11. D. C. Tu, C. C. Lin, S. J. Liao, and J. C. Chou, Journal of Vacuum Science and Technology 4, 2601 (1986).

    Article  CAS  Google Scholar 

  12. G. W. Goward and D. H. Boone, Oxidation of Metals 3, 475 (1971).

    Article  CAS  Google Scholar 

  13. F. H. Wang, H. Y. Lou, and L. X. Han, Journal of Vacuum Science and Technology 7, 122 (1991).

    CAS  Google Scholar 

  14. E. Godlewska and K. Godlewski, Oxidation of Metals 22, 117 (1984).

    Article  CAS  Google Scholar 

  15. D. K. Das, S. V. Joshi, and V. Singh, Metallurgical and Materials Transations A 29, 2173 (1998).

    Article  Google Scholar 

  16. F. D. Geib and R. A. Rapp, Oxidation of Metals 40, 213 (1993).

    Article  CAS  Google Scholar 

  17. E. W. A. Young and J. H. W. Dewit, Oxidation of Metals 26, 351 (1986).

    Article  CAS  Google Scholar 

  18. A. Kumar, M. Nasrallah, and D. L. Douglass, Oxidation of Metals 8, 227 (1974).

    Article  CAS  Google Scholar 

  19. Y. Niu, X. J. Zhang, Y. Wu, and F. Gesmundo, Corrosion Science 48, 4020 (2006).

    Article  CAS  Google Scholar 

  20. V. K. Tolpygo and D. R. Clarke, Acta Materialia 52, 5115 (2004).

    CAS  Google Scholar 

  21. P. Y. Hou and A. P. Mat, High Temperature 22, 535 (2005).

    Article  CAS  Google Scholar 

  22. R. Cueff, H. Buscail, E. Caudron, C. Issartel, and F. Riffard, Corrosion Science 45, 1815 (2003).

    Article  CAS  Google Scholar 

  23. Z. Y. Liu and W. Gao, Oxidation of Metals 55, 481 (2001).

    Article  CAS  Google Scholar 

  24. W. Wang, P. Yu, and F. H. Wang, Surface and Coatings Technology 201, 7425 (2007).

    Article  CAS  Google Scholar 

  25. C. Bai, Y. Luo, and C. Koo, Surface and Coatings Technology 183, 74 (2004).

    Article  CAS  Google Scholar 

  26. J. Stringer, B. A. Wilcox, and R. I. Jaffee, Oxidation of Metals 5, 11 (1972).

    Article  CAS  Google Scholar 

  27. M. H. Li, X. F. Sun, and W. Y. Hu, Oxidation of Metals 65, 137 (2006).

    Article  CAS  Google Scholar 

  28. J. R. Nicholls, N. J. Simms, and W. Y. Chan, Surface and Coatings Technology 149, 236 (2002).

    Article  CAS  Google Scholar 

  29. H. Y. Lou, Journal of Chinese society of corrosion and protection 5, 291 (1985).

    Google Scholar 

  30. T. Amamo, H. Isobe, N. Sakai, and T. Shishido, Journal of Alloys and Compounds 344, 394 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

This project is financially supported by the Knowledge Innovation Program of the Chinese Academy of Sciences, Grant No. YYYJ-0912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **tao Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Zhu, S. & Wang, F. Cyclic Oxidation and Hot Corrosion Behavior of Y/Cr-Modified Aluminide Coatings Prepared by a Hybrid Slurry/Pack Cementation Process. Oxid Met 76, 67–82 (2011). https://doi.org/10.1007/s11085-010-9228-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-010-9228-0

Keywords

Navigation