Log in

Transient Oxidation of a γ-Ni–28Cr–11Al Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

γ-NiCrAl alloys with relatively low Al contents tend to form a layered oxide scale during the early stages of oxidation, rather than an exclusive α-Al2O3 scale, the so-called “thermally grown oxide” (TGO). A layered oxide scale was established on a model γ-Ni–28Cr–11Al (at.%) alloy after isothermal oxidation for several minutes at 1100°C. The layered scale consisted of an NiO layer at the oxide/gas interface, an inner Cr2O3 layer, and an α-Al2O3 layer at the oxide/alloy interface. The evolution of such an NiO/Cr2O3/Al2O3 layered structure on this alloy differs from that proposed in earlier work. During heating, a Cr2O3 outer layer and a discontinuous inner layer of Al2O3 initially formed, with metallic Ni particles dispersed between the two layers. A rapid transformation occurred in the scale shortly after the sample reached maximum temperature (1100°C), when two (possibly coupled) phenomena occurred: (i) the inner transition alumina transformed to α-Al2O3, and (ii) Ni particles oxidized to form the outer NiO layer. Subsequently, NiO reacted with Cr2O3 and Al2O3 to form spinel. Continued growth of the oxide scale and development of the TGO was dominated by growth of the inner α-Al2O3 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. R. Wallwork and A. Z. Hed, Oxidation of Metals 3, 171 (1971).

    Article  CAS  Google Scholar 

  2. C. S. Gigins and F. S. Pettit, Journal of Electrochemical Society 118, 1782 (1971).

    Article  Google Scholar 

  3. T. J. Nijdam, L. P. H. Jeurgens, and W. G. Sloof, Materials at High Temperatures 20, 311 (2003).

    Article  CAS  Google Scholar 

  4. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, Progress in Materials Science 46, 505 (2001).

    Article  Google Scholar 

  5. T. J. Nijdam, L. P. H. Jeurgens, and W. G. Sloof, Acta Materialia 53, 1643 (2005).

    Article  CAS  Google Scholar 

  6. T. J. Nijdam, N. M. van der Pers, and W. G. Sloof, Materials and Corrosion 57, 269 (2006).

    Article  CAS  Google Scholar 

  7. B. W. Veal, A. P. Paulikas, and P. Y. Hou, Nature Materials 5, 349 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. A. Reddy, D. B. Hovis, A. H. Heuer, A. P. Paulikas, and B. W. Veal, Oxidation of Metals 67, 153 (2007).

    Article  CAS  Google Scholar 

  9. D. Hovis and A. H. Heuer, Scripta Materialia 53, 347 (2005).

    CAS  Google Scholar 

  10. L. J. Grabner, Journal of Applied Physics 49, 580 (1978).

    Article  CAS  ADS  Google Scholar 

  11. D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).

    Article  CAS  Google Scholar 

  12. A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, and W. J. Quadakkers, Surface and Coatings Technology 201, 3824 (2006).

    Article  CAS  Google Scholar 

  13. F. A. Golightly, G. C. Wood, and F. H. Scott, Oxidation of Metals 14, 217 (1980).

    Article  CAS  Google Scholar 

  14. K. Wefers and C. Misra, Oxides and Hydroxides of Aluminum, Alcoa Technical Paper No. 19, Alcoa Laboratories, Pittsburgh, PA (1987).

  15. J. L. Smialek and R. Gibala, Metallurgical Transactions A 14A, 2143 (1983).

    Article  CAS  ADS  Google Scholar 

  16. J. Doychak, J. L. Smialek, and T. E. Mitchell, Metallurgical Transactions A 20A, 499 (1989).

    Article  CAS  ADS  Google Scholar 

  17. A. Vlad, A. Stierle, N. Kasper, H. Dosch, and M. Rühle, Journal of Materials Research 21, 3047 (2006).

    Article  CAS  ADS  Google Scholar 

  18. L. Hu, D. Hovis, and A. H. Heuer, Scripta Materialia 61, 157 (2009).

    Article  CAS  Google Scholar 

  19. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  CAS  Google Scholar 

  20. H. J. Grabke, Intermetallics 7, 1153 (1999).

    Article  CAS  Google Scholar 

  21. G. C. Rybicki and J. L. Smialek, Oxidation of Metals 31, 275 (1989).

    Article  CAS  Google Scholar 

  22. B. A. Pint, J. R. Martin, and L. W. Hobbs, Solid State Ionics 78, 99 (1995).

    Article  CAS  Google Scholar 

  23. R. Prescott, D. F. Mitchell, M. J. Graham, and J. Doychak, Corrosion Science 37, 1341 (1995).

    Article  CAS  Google Scholar 

  24. P. Y. Hou, A. P. Paulikas, and B. W. Veal, Materials at High Temperatures 22, 535 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Professor Carlos G. Levi (University of California, Santa Barbara) is acknowledged for providing the NiCrAl alloys. The Office of Naval Research supported this research, under Contract No. N-00014-06-1-0760, Dr. D. Schiffler, Program Monitor. We are grateful to Dr. Boyd Veal and Mr. A. Palukas for access to their in situ APS oxidation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Heuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Hovis, D.B. & Heuer, A.H. Transient Oxidation of a γ-Ni–28Cr–11Al Alloy. Oxid Met 73, 275–288 (2010). https://doi.org/10.1007/s11085-009-9179-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-009-9179-5

Keywords

Navigation