Log in

Efficiency enhancement of intermediate band solar cell using front surface pyramid grating

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Intermediate band solar cells (IBSCs) hold the promise of power conversion efficiency (PCE) as high as that of the triple junction solar cells but with a simple single semiconductor junction. The absorption of photons with energy less than the band gap energy is guaranteed through the intermediate absorption process, hence the generation rate of carriers increases leading to enhancement of photo-generated current and efficiency of the solar cell. In this paper, we discuss the effect of using pyramid front surface grating as one of the light trap** techniques on the performance of InAs/GaAs (QD-IBSCs). A 3-D Finite Element Method (FEM) solver has been employed to simulate the proposed solar cell structure and to obtain its optical and electrical properties, and then we compared the results to those of IBSCs with planar front surface. Results show that maximum efficiency of the proposed model of IBSC with frontal surface grating is 58.15% with short circuit current density of 49.03 mA/ cm2 while the efficiency of flat surface IBSC is 46.81%, meaning that the power conversion efficiency has been improved by \(11.34\% ~\) in case of pyramid surface grated cell. The maximum value of output power observed in pyramid grated surface IBSC is 58.15 mW/cm2 with about 11.28 mW/cm 2 higher than its value for the flat surface one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Aly, A.E.M.M.: Progress into power conversion efficiency for solar cells based on nanostructured and realistic spectra. J. Renew. Sustain. Energy. 6, 023118 (2014). https://doi.org/10.1063/1.4873132

    Article  Google Scholar 

  • Aly, A.E.M.M., Nasr, A.: The effect of multi-intermediate bands on the behavior of an InAs1-xNx/GaAs1-ySby quantum dot solar cell. J. Semicond. 36(4), 042001 (2015). https://doi.org/10.1088/1674-4926/36/4/042001

    Article  ADS  Google Scholar 

  • Aly, A.E.M.M., Nasr, A.: Theoretical comparative study of quantum dot solar cell behavior for single and multi-intermediate bands. J. Energy Eng. 142, 1–8 (2016). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000346

    Article  Google Scholar 

  • Amalathas, A.P., Alkaisi, M.M.: Nanostructures for light trap** in thin film solar cells. Micromachines. 10, 1–18 (2019). https://doi.org/10.3390/mi10090619

    Article  Google Scholar 

  • Badawy, W.A.: A review on solar cells from Si-single crystals to porous materials and Quantum dots. J. Adv. Res. 6(2), 123–132 (2015). https://doi.org/10.1016/j.jare.2013.10.001

    Article  Google Scholar 

  • Battaglia, C., Hsu, C.M., Söderström, K., Escarré, J., Haug, F.J., Charrière, M., Boccard, M., Despeisse, M., Alexander, D.T.L., Cantoni, M., Cui, Y., Ballif, C.: Light trap** in solar cells: can periodic beat random? ACS Nano 6, 2790–2797 (2012). https://doi.org/10.1021/nn300287j

    Article  Google Scholar 

  • Beattie, N.S., See, P., Zoppi, G., Ushasree, P.M., Duchamp, M., Farrer, I., Ritchie, D.A., Tomić, S.: Quantum engineering of InAs/GaAs quantum dot based intermediate band solar cells. ACS Photonics 4, 2745–2750 (2017). https://doi.org/10.1021/acsphotonics.7b00673

    Article  Google Scholar 

  • Benaichi, M., Chetouani, A., Karkri, A., Moussaid, D., Elqabbaj, S.E.: Three-dimensional drift-diffusion model for simulation and investigation of bordering effects in silicon solar cells. Mater. Today Proc. 13, 630–636 (2019). https://doi.org/10.1016/j.matpr.2019.04.022

    Article  Google Scholar 

  • Capper P, Kasap S, ed. (2017) Springer Handbook of Electronic and Photonic Materials. Springer nature, Switzerland

  • Chang, W.C., Yang, M.J., Yarn, K.F., Chuang, W.C. (2012) Analyses of one-dimensional gratings on the performance of solar cells

  • Chen, H.L., Cattoni, A., De Lépinau, R., Walker, A.W., Höhn, O., Lackner, D., Siefer, G., Faustini, M., Vandamme, N., Goffard, J., Behaghel, B., Dupuis, C., Bardou, N., Dimroth, F., Collin, S.: A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nat. Energy. 4, 761–767 (2019). https://doi.org/10.1038/s41560-019-0434-y

    Article  ADS  Google Scholar 

  • Chowdhury, I.U.I., Sarker, J., Shifat, A.S.M.Z., Shuvro, R.A., Mitul, A.F.: Performance analysis of high efficiency InxGa1−xN/GaN intermediate band quantum dot solar cells. Results Phys. 9, 432–439 (2018). https://doi.org/10.1016/j.rinp.2018.03.003

    Article  ADS  Google Scholar 

  • Cnovas, E., Mart, A., Luque, A., Farmer, C.D., Stanley, C.R., Snchez, A.M., Ben, T., Molina, S.I. (2010) Lateral absorption measurements of InAs/GaAs quantum dots stacks: potential as intermediate band material for high efficiency solar cells. In: Energy Procedia. pp. 27–34

  • Elkhamisy, K.M., El-Rabaie, S., Elagooz, S.S., Elhamid, H.A. (2019) The effect of different surface grating shapes on thin film solar cell efficiency. In: Proceedings of 2019 International Conference on Innovative Trends in Computer Engineering, ITCE 2019. pp. 297–300. Institute of Electrical and Electronics Engineers Inc.

  • Elsehrawy, F., Niemi, T., Cappelluti, F.: Guided-mode resonance gratings for intermediate band quantum dot solar cells. Opt. Express. 26, A352–A359 (2018). https://doi.org/10.1364/PV.2017.PM3A.4

    Article  ADS  Google Scholar 

  • Ghahremani, A., Fathy, A.E.: A three-dimensional multiphysics modeling of thin-film amorphous silicon solar cells. Energy Sci. Eng. 3, 520–534 (2015). https://doi.org/10.1002/ese3.100

    Article  Google Scholar 

  • Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., Gorini, R.: The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 24, 38–50 (2019). https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  • Gul, M., Kotak, Y., Muneer, T.: Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 34, 485–526 (2016). https://doi.org/10.1177/0144598716650552

    Article  Google Scholar 

  • Heidarzadeh, H., Rostami, A., Dolatyari, M.: Management of losses ( thermalization-transmission ) in the Si-QDs inside 3C – SiC to design an ultra-high-efficiency solar cell. Mater. Sci. Semicond. Process. 109, 104936 (2020). https://doi.org/10.1016/j.mssp.2020.104936

    Article  Google Scholar 

  • Imran, A., Jiang, J., Eric, D., Zahid, M.N., Yousaf, M., Ahmad, M., Hassan, S.A.: Efficiency enhancement through flat intermediate band in Quantum dot solar cell. Results Phys. 10, 241–247 (2018). https://doi.org/10.1016/j.rinp.2018.05.037

    Article  ADS  Google Scholar 

  • Islam, A., Das, A., Sarkar, N., Matin, M.A., Amin, N. (2018) Numerical analysis of PbSe/GaAs quantum dot intermediate band solar cell (QDIBSC); numerical analysis of PbSe/GaAs quantum dot intermediate band solar cell (QDIBSC)

  • Ji, K., Yuan, J., Li, F., Shi, Y., Ling, X., Zhang, X., Zhang, Y., Lu, H., Yuan, J., Ma, W.: High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A. 8, 8104–8112 (2020). https://doi.org/10.1039/d0ta02743j

    Article  Google Scholar 

  • Kannan, N., Vakeesan, D.: Solar energy for future world: A review. Renew. Sustain. Energy Rev. 62, 1092–1105 (2016). https://doi.org/10.1016/j.rser.2016.05.022

    Article  Google Scholar 

  • Khalifa, H.S., Marouf, H., Elkhamisy, K.M.: Surface grating to enhancement the efficiency of Si crystalline solar cells. Curr. Sci. Int. 6, 993–999 (2017)

    Google Scholar 

  • Krishnan, C., Mercier, T., Rahman, T., Piana, G., Brossard, M., Yagafarov, T., To, A., Pollard, M.E., Shaw, P., Bagnall, D.M., Hoex, B., Boden, S.A., Lagoudakis, P.G., Charlton, M.D.B.: Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells: Via resonant energy transfer and luminescent downshifting. Nanoscale 11, 18837–18844 (2019). https://doi.org/10.1039/c9nr04003j

    Article  Google Scholar 

  • Lam, P., Wu, J., Tang, M., Kim, D., Hatch, S., Ramiro, I., Dorogan, V.G., Benamara, M., Mazur, Y.I., Salamo, G.J., Wilson, J., Allison, R., Liu, H.: InAs/InGaP quantum dot solar cells with an AlGaAs interlayer. Sol. Energy Mater. Sol. Cells. 144, 96–101 (2016). https://doi.org/10.1016/j.solmat.2015.08.031

    Article  Google Scholar 

  • Lee, H.C., Lee, W., Moon, J.H., Kim, D.: Geometric effect of grating-patterned electrode for high conversion efficiency of dye-sensitized solar cells. Multiscale Sci. Eng. 1, 161–166 (2019). https://doi.org/10.1007/s42493-018-00006-w

    Article  ADS  Google Scholar 

  • López, E., Martí, A., Antolín, E., Luque, A.: On the potential of silicon intermediate band solar cells. Energies 13, 1–10 (2020). https://doi.org/10.3390/en13123044

    Article  Google Scholar 

  • Luque, A., Martí, A.: Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Phys. Rev. Lett. 78(26), 5014–5017 (1997). https://doi.org/10.1103/PhysRevLett.78.5014

    Article  ADS  Google Scholar 

  • Luque, A., Martí, A., Stanley, C.: Understanding intermediate-band solar cells. Nat. Photonics. 6, 146–152 (2012). https://doi.org/10.1038/nphoton.2012.1

    Article  ADS  Google Scholar 

  • Mahmoud, A.H.K., Hussein, M., Hameed, M.F.O., Abdel-Aziz, M., Hosny, H.M., Obayya, S.S.A.: Optoelectronic performance of a modified nanopyramid solar cell. J. Opt. Soc. Am. B. 36, 357–365 (2019). https://doi.org/10.1364/josab.36.000357

    Article  ADS  Google Scholar 

  • Muhammad, M.H., Hameed, M.F.O., Obayya, S.S.A.: Broadband absorption enhancement in modified grating thin-film solar cell. IEEE Photonics J. 9, 1–14 (2017). https://doi.org/10.1109/JPHOT.2017.2698720

    Article  Google Scholar 

  • Naito, S., Yoshida, K., Miyashita, N., Tamaki, R., Hoshii, T., Okada, Y.: Effect of Si do** and sunlight concentration on the performance of InAs/GaAs quantum dot solar cells. J. Photonics Energy. 7(2), 025505 (2017). https://doi.org/10.1117/1.jpe.7.025505

    Article  ADS  Google Scholar 

  • Okada, Y., Ekins-Daukes, N.J., Kita, T., Tamaki, R., Yoshida, M., Pusch, A., Hess, O., Phillips, C.C., Farrell, D.J., Yoshida, K., Ahsan, N., Shoji, Y., Sogabe, T., Guillemoles, J.F.: Intermediate band solar cells: recent progress and future directions. Appl. Phys. Rev. 2, 021302 (2015). https://doi.org/10.1063/1.4916561

    Article  ADS  Google Scholar 

  • Okada, Y., Miyashita, N., Oteki, Y., Shoji, Y. (2019) High-efficiency Inas-InGaAs quantum dash solar cells developed through current constraint engineering. In: 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). pp. 765–767. IEEE

  • Parida, B., Iniyan, S., Goic, R.: A review of solar photovoltaic technologies. Renew. Sustain. Energy. Rev. 15(3), 1625–1636 (2011). https://doi.org/10.1016/j.rser.2010.11.032

    Article  Google Scholar 

  • Ramiro, I., Antolin, E., Steer, M.J., Linares, P.G., Hernandez, E., Artacho, I., Lopez, E., Ben, T., Ripalda, J.M., Molina, S.I. (2012) InAs/AlGaAs quantum dot intermediate band solar cells with enlarged sub-bandgaps. In: 2012 38th IEEE Photovoltaic Specialists Conference. pp. 652–656. IEEE

  • Rao, J., Varlamov, S.: Light trap** in thin film polycrystalline silicon solar cell using diffractive gratings. Energy. Procedia. 33, 129–136 (2013). https://doi.org/10.1016/j.egypro.2013.05.049

    Article  Google Scholar 

  • Raut, K.H., Chopde, H.N., Deshmukh, D.W.: A review on comparative studies of diverse generation in solar cell. Int. J. Electr. Eng. Ethics. 1, 1–9 (2018)

    Google Scholar 

  • Saravanan, S., Dubey, R.S., Kalainathan, S.: Effect of diffracting grating on the performance of thin film silicon solar cells. Mater. Today: Proc. 3(6), 2284–2288 (2016). https://doi.org/10.1016/j.matpr.2016.04.138

    Article  Google Scholar 

  • Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  Google Scholar 

  • Urmita Sikder, Rifat-Ul-Ferdous, A.H. (2012) Effects of do** of intermediate band region on intermediate band solar cell characteristics. In: 7th International Conference on Electrical and Computer Engineering,. pp. 339–342. IEEE

  • Sze, S.M., Ng, K.K.: Physics of semiconductor devices physics of semiconductor devices. United States, New York (2006)

    Book  Google Scholar 

  • Tabrizi, A.A., Saghaei, H., Mehranpour, M.A., Jahangiri, M.: Enhancement of absorption and effectiveness of a perovskite thin-film solar cell embedded with gold nanospheres. Plasmonics (2021). https://doi.org/10.1007/s11468-020-01341-1

    Article  Google Scholar 

  • Tayagaki, T., Hoshi, Y., Usami, N.: Investigation of the open-circuit voltage in solar cells doped with quantum dots. Sci. Rep. 3, 1–5 (2013). https://doi.org/10.1038/srep02703

    Article  Google Scholar 

  • Utrilla, A.D., Reyes, D.F., Llorens, J.M., Artacho, I., Ben, T., González, D., Gačević Kurtz, A., Guzman, A., Hierro, A., Ulloa, J.M.: Thin GaAsSb cap** layers for improved performance of InAs/GaAs quantum dot solar cells. Sol. Energy Mater. Sol. Cells. 159, 282–289 (2017). https://doi.org/10.1016/j.solmat.2016.09.006

    Article  Google Scholar 

  • Wang, K.X., Yu, Z., Liu, V., Cui, Y., Fan, S.: Absorption enhancement in ultrathin solar cells with antireflection and light-trap** nanocone gratings. Nano Lett. 12, 1616–1619 (2012). https://doi.org/10.1364/pv.2012.pt2c.2

    Article  ADS  Google Scholar 

  • **ng, Y., Han, P., Wang, S., Liang, P., Lou, S., Zhang, Y., Hu, S., Zhu, H., Zhao, C., Mi, Y.: A review of concentrator silicon solar cells. Renew. Sustain. Energy Rev. 51, 1697–1708 (2015). https://doi.org/10.1016/j.rser.2015.07.035

    Article  Google Scholar 

  • Yarn, K.-F., Luo, W.-J., Chang, W.-C., Chuang, W.-C.: Effects of introducing periodical polymer gratings on the solar cell. International J. Phys. Sci. 4(12), 758 (2009)

    Google Scholar 

  • Yoshida, K., Okada, Y., Sano, N.: Device simulation of intermediate band solar cells: effects of do** and concentration. J. Appl. Phys. 112, 1–7 (2012). https://doi.org/10.1063/1.4759134

    Article  Google Scholar 

  • Yousif, B., Abo-Elsoud, M.E.A., Marouf, H.: Triangle grating for enhancement the efficiency in thin film photovoltaic solar cells. Opt. Quantum Electron. 51, 1–11 (2019). https://doi.org/10.1007/s11082-019-1987-5

    Article  Google Scholar 

  • Zhu, M., Liu, X., Liu, S., Chen, C., He, J., Liu, W., Yang, J., Gao, L., Niu, G., Tang, J., Zhang, J.: Efficient PbSe colloidal quantum dot solar cells using SnO2 as a buffer layer. ACS Appl. Mater. Interface. 12, 2566–2571 (2020). https://doi.org/10.1021/acsami.9b19651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shorok Elewa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elewa, S., Yousif, B. & Abo-Elsoud, M.E.A. Efficiency enhancement of intermediate band solar cell using front surface pyramid grating. Opt Quant Electron 53, 360 (2021). https://doi.org/10.1007/s11082-021-03007-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03007-6

Keywords

Navigation