Log in

A simple equivalent circuit model of photoconductive dipole antenna for the study of Terahertz intensity modulation

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, a simple equivalent circuit model has been proposed for Ti–Au photoconductive dipole antenna to analyse its intensity modulation and radiation characteristics. The photocurrent and the terahertz emission intensity obtained using the proposed circuit model is verified using numerical method. Further, the equivalent circuit model is integrated with an electromagnetic tool to analyse its radiation characteristics and the photoconductive antenna is found to provide a directivity of 5.89 dBi at 1.58 THz. Intensity modulation of terahertz radiation is analysed using the equivalent circuit model by applying a bias voltage in the form of pulses. The modulated photocurrent output would produce the corresponding emission intensity which can be used for terahertz data transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Source conductance

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Bala, R., Anupma, M.: Characterization of graphene for performance enhancement of patch antenna in THz region. Opt.-Int. J. Light Electron Opt. 127(4), 2089–2093 (2016)

    Article  Google Scholar 

  • Bashirpour, M., et al.: Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array. Opt. Laser Technol. 120, 105726 (2019)

    Article  Google Scholar 

  • Berry, C.W., Mona, J.: Principles of impedance matching in photoconductive antennas. J. Infrared Millim. Terahertz Waves 33(12), 1182–1189 (2012)

    Article  Google Scholar 

  • Bharadwaj, M., Jitendra, P., Ratnajit, B.: Analytical modelling of terahertz photomixing antennas. IETE J. Res. 1–12 (2019)

  • Bharadwaj, M., Jitendra, P., Ratnajit, B.: Design of novel beam-switching semicircular microstrip antenna and transmission line with Graphene at Terahertz frequencies. In: Asia-Pacific Microwave Conference (APMC), (2012).

  • Emadi, R., et al.: Transmitting and detecting THz pulses using graphene and metals-based photoconductive antennas. J. Opt. Soc. Amerial B 35(1), 113–121 (2018)

    Article  ADS  Google Scholar 

  • George, J.N., Ganesh Madhan, M.: Analysis of single band and dual band graphene based patch antenna for terahertz region. Phys. E Low-Dimens. Syst. Nanostruct. 94, 126–131 (2017)

    Article  ADS  Google Scholar 

  • Gupta, S., John, F.W., Gerard, A.M.: Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures. IEEE J. Quantum Electron. 28(10), 2464–2472 (1992)

    Article  ADS  Google Scholar 

  • Hochberg, M., et al.: Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater. 5(9), 703 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Hoffmann, M.C., József, A.F.: Intense ultrashort terahertz pulses: generation and applications. J. Phys. D Appl. Phys. 44(8), 083001 (2011)

    Article  ADS  Google Scholar 

  • Hu, B.B., Martin, C.N.: Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1718 (1995)

    Article  ADS  Google Scholar 

  • Ishigaki, K., et al.: Direct intensity modulation and wireless data transmission characteristics of terahertz-oscillating resonant tunnelling diodes. Electron. Lett. 48(10), 582–583 (2012)

    Article  ADS  Google Scholar 

  • Khiabani, N.: Modelling, design and characterisation of terahertz photoconductive antennas. Diss. University of Liverpool (2013).

  • Khiabani, N., et al.: Theoretical modeling of a photoconductive antenna in a terahertz pulsed system. IEEE Trans. Antennas Propag. 61(4), 1538–1546 (2013)

    Article  ADS  Google Scholar 

  • Kim, D.S., Citrin, D.S.: Coulomb and radiation screening in photoconductive terahertz sources. Appl. Phys. Lett. 88(16), 161117 (2006)

    Article  ADS  Google Scholar 

  • Lee, S.H., et al.: Broadband modulation of terahertz waves with non-resonant graphene meta-devices. IEEE Trans. Terahertz Sci. Technol. 3(6), 764–771 (2013)

    Article  ADS  Google Scholar 

  • Li, D, et al.: Effects of substrate on the performance of photoconductive thz antennas. In: International Workshop on Antenna Technology (iWAT). IEEE, (2010).

  • Llatser, I., et al.: Graphene-based nano-patch antenna for terahertz radiation. Photon. Nanostruct.-Fundam. Appl. 10(4), 353–358 (2012)

    Article  ADS  Google Scholar 

  • Loata, G.C., et al.: Radiation field screening in photoconductive antennae studied via pulsed terahertz emission spectroscopy. Appl. Phys. Lett. 91(23), 232506 (2007)

    Article  ADS  Google Scholar 

  • Malhotra, I., et al.: Analytical framework of small-gap photoconductive dipole antenna using equivalent circuit model. Opt. Quantum Electron. 49(10), 334 (2017)

    Article  Google Scholar 

  • Miyamaru, F., et al.: Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas. Appl. Phys. Lett. 96(21), 211104 (2010)

    Article  ADS  Google Scholar 

  • Moreno, E., et al.: Time-domain numerical modeling of THz photoconductive antennas. IEEE Trans. Terahertz Sci. Technol. 4(4), 490–500 (2014)

    Article  ADS  Google Scholar 

  • Nissiyah, G.J., Ganesh Madhan, M.: Graphene-based photoconductive antenna structures for directional terahertz emission. Plasmonics 14(4), 1–10 (2018)

    Google Scholar 

  • Nissiyah, G.J., Ganesh Madhan, M.: A Narrow spectrum terahertz emitter based on graphene photoconductive antenna. Plasmonics 14(6), 2003–2011 (2019)

    Article  Google Scholar 

  • Piao, Z., Tani, M., Sakai, K.: Carrier dynamics and terahertz radiation in photoconductive antennas. Jpn. J. Appl. Phys. 39(1R), 96 (2000)

    Article  ADS  Google Scholar 

  • Pickwell, E., Wallace, V.P.: Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39(17), R301 (2006)

    Article  ADS  Google Scholar 

  • Prajapati, J., et al.: Circuit modeling and performance analysis of photoconductive antenna. Opt. Commun. 394, 69–79 (2017)

    Article  ADS  Google Scholar 

  • Sensale-Rodriguez, B., et al.: Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99(11), 113104 (2011)

    Article  ADS  Google Scholar 

  • Sensale-Rodriguez, B., et al.: Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett. 12(9), 4518–4522 (2012)

    Article  ADS  Google Scholar 

  • Shen, Y.-C.: Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int. J. Pharm. 417(1–2), 48–60 (2011)

    Article  Google Scholar 

  • Tani, M., et al.: Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 36(30), 7853–7859 (1997)

    Article  ADS  Google Scholar 

  • Thampy, A.S., Darak, M.S., Dhamodharan, S.K.: Analysis of graphene based optically transparent patch antenna for terahertz communications. Phys. E Low-Dimens. Syst. Nanostruct. 66, 67–73 (2015)

    Article  ADS  Google Scholar 

  • Weis, P., et al.: Spectrally wide-band terahertz wave modulator based on optically tuned graphene. ACS Nano 6(10), 9118–9124 (2012)

    Article  Google Scholar 

  • **ong, Z., et al.: Development of numerical simulation platform of micro-structured photoconductive antenna based on full-wave FDTD. In: 2019 6th International Conference on Information Science and Control Engineering (ICISCE). IEEE, (2019).

  • Yan, R., et al.: A new class of electrically tunable metamaterial terahertz modulators. Opt. Express 20(27), 28664–28671 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, Jemima Nissiyah. G, is thankful to “Visvesvaraya PhD scheme of Electronics and IT” (Lr.No.PhD-MLA/ 4(65)/2015-16/01, dt.16.03.2016), DeitY, for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jemima Nissiyah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nissiyah, G.J., Madhan, M.G. A simple equivalent circuit model of photoconductive dipole antenna for the study of Terahertz intensity modulation. Opt Quant Electron 53, 173 (2021). https://doi.org/10.1007/s11082-021-02814-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02814-1

Keywords

Navigation