Log in

Resonant tunneling though an asymmetrical two-magnetic-barrier structure on single layer graphene

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The transmission probability against the electron normal incident energy through an asymmetrical two-magnetic-barrier structure of single layer graphene has been investigated and presented. One barrier’s height and width are varied while those of the other are kept at constant values. The effect of the structural asymmetry on the resonance energy and the resonant transmission peak value are also systematically studied with the help of numerical calculations based on the transfer matrix method. Investigations show that the unity transmission occurs in an asymmetrical two-magnetic-barrier structure when both the phase difference condition for resonance (PDCR) and the maximum condition for the resonance peak value (MCPV) are satisfied simultaneously. However, PDCR underestimates the resonance energy of an asymmetrical two-magnetic-barrier structure, and the deviation becomes more obvious as the structure progressively becomes less symmetrical. These findings are believed to be of significant importance for the design of single layer graphene based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beenakker, C.W.J.: Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008)

    Article  ADS  Google Scholar 

  • Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  • De Martino, A., Dell’Anna, L., Egger, R.: Magnetic confinement of massless dirac fermions in graphene. Phys. Rev. Lett. 98, 066802 (2007)

    Article  ADS  Google Scholar 

  • Dell’Anna, L., De Martino, A.: Wave-vector-dependent spin filtering and spin transport through magnetic barriers in graphene. Phys. Rev. B 80, 155416 (2009)

    Article  ADS  Google Scholar 

  • Hou, Q.H., Wang, R.Z., Yan, H.: Giant magnetoresistance effect in graphene with asymmetrical magnetic superlattices. Appl. Phys. Lett. 101, 152404 (2012)

    Article  ADS  Google Scholar 

  • Huy, C., Lien Nguyen, V.: Tunneling through finite graphene superlattices: resonance splitting effect. J. Phys.: Condens. Matter 27, 095302 (2015)

    ADS  Google Scholar 

  • Li, Y.X.: Transport in a magnetic field modulated graphene superlattice. J. Phys.: Condens. Matter 22, 015302 (2010)

    ADS  Google Scholar 

  • Li, Y.J., Guo, Y.: Transmission characteristics in double and triple non-uniform magnetic barriers based on graphene. Current. Appl. Phys. 11, 6–10 (2011)

    Article  ADS  Google Scholar 

  • Lin, X., Wang, H.L., Pan, H., Xu, H.Z.: Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation. Chin. Phys. B 20, 047302 (2011)

    Article  ADS  Google Scholar 

  • Masir, M.R., Vasilopoulos, P., Matulis, A., Peeters, F.M.: Direction-dependent tunneling through nanostructured magnetic barriers in graphene. Phys. Rev. B 77, 235443 (2008)

    Article  ADS  Google Scholar 

  • Niu, Z.P., Li, F.X., Wang, B.G., Sheng, L., **ng, D.Y.: Spin transport in magnetic graphene superlattices. Eur. Phys. J. B 66, 245–250 (2008)

    Article  ADS  Google Scholar 

  • Song, Y., Guo, Y.: Giant Goos-Hänchen shift in graphene double-barrier structures. Appl. Phys. Lett. 100, 253116 (2012)

    Article  ADS  Google Scholar 

  • Tan, L.Z., Park, C.H., Louie, S.G.: Graphene Dirac fermions in one-dimensional inhomogeneous field profiles: transforming magnetic to electric field. Phys. Rev. B 81, 195426 (2010)

    Article  ADS  Google Scholar 

  • Wang, L.G., Zhu, S.Y.: Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers. Phys. Rev. B 81, 205444 (2010)

    Article  ADS  Google Scholar 

  • Wang, S.X., Li, Z.W., Liu, J.J., Li, Y.X.: Transport properties through double-magnetic-barrier structures in graphene. Chin. Phys. B 20, 077305 (2011a)

    Article  ADS  Google Scholar 

  • Wang, H.Y., Chen, X.W., Zhou, B.H., Liao, W.H., Zhou, G.H.: Magnetotransport in a graphene monolayer with two tunable magnetic barriers. Phys. B.: Condens. Matter 406, 4407–4411 (2011b)

    Article  ADS  Google Scholar 

  • Wu, Q.S., Zhang, S.N., Yang, S.J.: Transport of the graphene electrons through a magnetic superlattice. J. Phys.: Condens. Matter 20, 485210 (2008)

    Google Scholar 

  • Xu, H.Z., Wang, L.Y., Yan, Q.Q., Zhang, S.C.: Spin filtering magnetic modulation and spin-polarization switching in hybrid ferromagnet/semiconductor structures. Sci. China-Phys. Mech. Astron. 57, 1057–1062 (2014a)

    Article  ADS  Google Scholar 

  • Xu, Y., He, Y., Yang, Y.F.: Resonant peak splitting in graphene superlattices with one-dimensional periodic potentials. Appl. Phys. A 115, 721–729 (2014b)

    Article  ADS  Google Scholar 

  • Yuan, R.Y., Wang, R.Z., Xue, K., Wei, J.S., Song, X.M., Wang, B., Yan, H.: Spin transport in an asymmetrical magnetic superlattice. Phys. Rev. B 74, 024417 (2006)

    Article  ADS  Google Scholar 

  • Zhao, X.D., Yamamoto, H., Taniguchi, K.: Unity resonance and under-unity resonance conditions in asymmetrical double-barrier structures. Internal J. Mod. Phys. B9, 2119–2137 (1995a)

    Article  ADS  Google Scholar 

  • Zhao, X.D., Yamamoto, H., Taniguchi, K.: Theoretical study of resonant-tunneling and confining phenomena with mass variation in unsymmetrical rectangular double-barrier structures. Appl. Phys. A 60, 369–376 (1995b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant No. 2013CB934003) and the State Key Laboratory of Software Development Environment (Grant No.SKLSDE-2016ZX-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaizhe Xu or Ya** Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Feng, S., Zhang, Y. et al. Resonant tunneling though an asymmetrical two-magnetic-barrier structure on single layer graphene. Opt Quant Electron 49, 250 (2017). https://doi.org/10.1007/s11082-017-1088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1088-2

Keywords

Navigation