Log in

Optical and structural properties of TiO2 nanopowders with Co/Ce do** at various temperature

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, preparation of 2 mol% Ce and 4 mol% Co doped TiO2 nanopowders via sol–gel process have been investigated. The effects of Co and Ce do** and calcination temperature (475–1000 °C) on the structural and optical properties of titania nanopowders studied by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscope and UV–Vis absorption spectroscope. XRD results showed that, Titania rutile phase formation in ternary system (Ti–Co–Ce) was inhibited by Ce4+ and promoted by Co4+ co-doped TiO2 in high temperatures (500–700 °C) and 61 mol% anatase composition is retained even after calcination at 800 °C. The optical absorption spectrum indicates that the TiO2 nanoparticles have a direct band gap of 3.21 eV. But optical band gap of the doped TiO2 (2 mol% Ce and 4 mol% Co) was found to be 3.14–3.20 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bouras, P., Slathatos, E., Lianos, P.: Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl. Catal. B Environ. 73, 51–59 (2007)

    Article  Google Scholar 

  • Caimei, F., Peng, X., Yan**, S.: Preparation of nano-TiO2 doped with cerium and its photocatalytic activity. J. Rare Earth 24, 309–313 (2006)

    Article  Google Scholar 

  • Cao, Y., He, T., Zhao, L., Wang, E., Yang, W., Cao, Y.: Structure and phase transition behavior of Sn4+-doped TiO2 nanoparticles. J. Phys. Chem. C 113, 18121–18124 (2009)

    Article  Google Scholar 

  • Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  • Fujishima, A., Honda, K.: Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  • Fukumura, T., Yamada, Y., Toyosaky, H., Hasegawa, T., Koinuma, H., Kawasaki, M.: Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics. Appl. Surf. Sci. 223, 62 (2004)

    Article  ADS  Google Scholar 

  • Gopal, M., Chan, W., Jonghe, L.: Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001–6008 (1997)

    Article  ADS  Google Scholar 

  • Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  • Janisch, R., Gopal, P., Spaldin, N.A.: Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter 17, R657 (2005)

    ADS  Google Scholar 

  • **, Z., Zhang, X., Li, Y., Li, S., Lu, G.: 5.1 % Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal. Commun. 8, 1267–1273 (2007)

    Article  Google Scholar 

  • Klug, P., Alexander, L.E.: X-Ray Diffraction Procedures. Wiley, New York (1974)

    Google Scholar 

  • Kostov, I.: The mineralogical knowledge of the ancient bulgarians according to some medieval sources. Annual vol. 46, part І, рр.87–92. Geology and Geophysics, Sofia, 2003 (1973)

  • Kubacka, A., Fuerte, A., Martinez-Arias, A., Fernandez-Garcia, M.: Nanosized Ti–V mixed oxides: effect of do** level in the photo-catalytic degradation of toluene using sunlight-type excitation. Appl. Catal. B Environ. 74, 26–33 (2007)

    Article  Google Scholar 

  • Kudo, A.: Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int. J. Hydrogen Energy 32, 2673–2678 (2007)

    Article  Google Scholar 

  • Li, F.B., Li, X.Z., Hou, M.F., Cheah, K.W., Choy, W.C.H.: Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appl. Catal. A Gen. 285, 181–189 (2005)

    Article  Google Scholar 

  • Mark H.F., Othmer D.F., Overberger C.G., Seaberg, G.T.: Encyclopedia of Chemical Technology, vol. 23, Wiley, New York (1983)

    Google Scholar 

  • Ohko, Y., Fujishima, A., Hashimoto, K.: Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst. J. Phys. Chem. B 102, 1724–1729 (1998)

    Article  Google Scholar 

  • Palmer, F.L., Eggins, B.R.: The effect of operational parameters on the photocatalytic degradation of humic acid. J. Photochem. Photobiol. 148, 137–143 (2002)

    Article  Google Scholar 

  • Paola, A.D., Garcı´a-Lo´ pez, E., Ikeda, S., Marcı`, G., Ohtani, B., Palmisano, L.: Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal. Today 75, 87–93 (2002)

    Article  Google Scholar 

  • Rajeshwar, K., Tacconi, N.R., Chenthamarakshan, C.R.: Semiconductor-based composite materials: preparation, properties, and performance. Chem. Mater. 13, 2765–2782 (2001)

    Article  Google Scholar 

  • Shinde, S.R., Ogale, S.B., Das Sarma, S., Simpson, J.R., Drew, H.D., Lofland, S.E., Lanci, C., Buban, J.P., Browning, N.D., Kulkarmi, V.N., Higgins, J., Sharma, R.P., Green, R.L., Venkatesan, T.: Ferromagnetism in laser deposited anatase Ti1−x Cox O2−δ films. Phys. Rev. B 67, 115211 (2003)

    Article  ADS  Google Scholar 

  • Stengl, V., Bakardjieva, S., Murafa, N.: Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater. Chem. Phys. 114, 217–226 (2009)

    Article  Google Scholar 

  • Wang, C.Y., Liu, C.Y., Shen, T.: The photocatalytic oxidation of phenylmercaptotetrazole in TiO2 dispersions. J. Photochem. Photobiol. A Chem. 109, 65–70 (1997)

    Article  Google Scholar 

  • Weast, R.C.: Handbook of Chemistry and Physics, pp. B–154–B–155. CRC Press, Boca Raton (1984)

    Google Scholar 

  • **e, Y., Yuan, C.: Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation. Appl. Surf. Sci. 221, 17–24 (2004)

    Article  ADS  Google Scholar 

  • Yan, Q.Z., Su, X.T., Huang, Z.Y., Ge, C.C.: Sol–gel auto-igniting synthesis and structural property of cerium-doped titanium dioxide nanosized powders. J. Eur. Ceram. Soc. 26, 915–921 (2006)

    Article  Google Scholar 

  • Zhang, X., Liu, Q.Q.: Preparation and characterization of titania photocatalyst co-doped with boron, nickel, and cerium. Mater. Lett. 62, 2589–2592 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahnaz Alijani or Behzad Koozegar Kaleji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilkhechi, N.N., Alijani, M. & Kaleji, B.K. Optical and structural properties of TiO2 nanopowders with Co/Ce do** at various temperature. Opt Quant Electron 48, 148 (2016). https://doi.org/10.1007/s11082-016-0435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0435-z

Keywords

Navigation