Log in

A modified variable complexity modeling for efficient multidisciplinary aircraft conceptual design

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

This paper describes a modified variable complexity modeling (MVCM) framework that uses a neural network to replace the Taylor series after several warm-up iterations. The MVCM framework with an additive scaling function is most efficient in terms of high-fidelity function evaluation savings compared with traditional variable complexity modeling (VCM) among multiplicative and hybrid scaling functions. The MVCM framework achieves 59.1 and 68.6 % savings in high-fidelity function evaluations for one-dimensionally and two-dimensionally constrained problems, respectively, compared with the VCM method. The MVCM framework provides a larger trust region than the VCM due to the global behavior of neural networks. The MVCM solution also converges closely to the high-fidelity function. The MVCM framework is integrated with an in-house low-fidelity aircraft design synthesis program and a high-fidelity analysis (AADL3D) for the conceptual design of multidisciplinary regional jet aircraft (RJA) to enhance the optimal RJA configuration compared with low-fidelity analysis results. The optimal RJA wing configuration using the MVCM framework provides more realistic and reasonable configurations compared to the results of low-fidelity analysis with a short turnaround time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

f :

Objective function

g :

Inequality constraint

x :

Design vector

x L :

Lower bound of design space

x U :

Upper bound of design space

β :

Multiplicative scaling factor

γ :

Additive scaling factor

\( \Delta \) :

Trust region size

ɛ f :

Objective function convergence tolerance

ɛ x :

Design variable convergence tolerance

ɛ g :

Constraint convergence tolerance

ρ :

Trust region ratio

ω :

Hybrid scaling weight factor

\( \lambda \) :

Taper ratio

\( \varLambda_{LE} \) :

Leading sweep angle

\( \Delta C_{dflap} \) :

Drag increment due to flap

AR :

Aspect ratio

C L :

Lift coefficient

C D :

Total drag coefficient

C Lmax :

Maximum lift coefficient

C :

Directional stability derivative

C :

Pitching moment coefficient

C Do :

Parasitic drag

M :

Mach number

P avail :

Power available

SFC :

Fuel specified consumption

(X, Y, Z) cg :

Aircraft center of gravity

W e :

Empty weight

W fuel :

Fuel weight

W o :

Takeoff gross weight

W odesign :

Design gross weight

X LND :

Landing distance

X TO :

Takeoff distance

V avail :

Available speed

I xx I yy I zz :

Moment of inertia

high :

High-fidelity model

low :

Low-fidelity model

n :

Current iteration

scaled :

Scaled low-fidelity value

w :

Wing

0 :

Initial value

* :

Optimum value

−:

Approximate function

References

  • Alexandrov NM, Lewis RM (2002) An overview of first-order model management for engineering optimization. Optim Eng 2:413–430

    Article  Google Scholar 

  • Alexandrov NM, Dennis JE, Lewis RM, Torczon V (1998) A trust-region framework for managing the use of approximation models in optimization. Struct Optim 15(1):16–23

    Article  Google Scholar 

  • Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA (2001) Approximation and model management in aerodynamic optimization with variable-fidelity models. J Aircr 38:1093–1101

    Article  Google Scholar 

  • Arora J (2004) Introduction to optimum design, 2nd edn. Academic Press, New York

    Google Scholar 

  • Boyd JP (2013) A Fourier error analysis for radial basis functions on an infinite uniform grid. Part 2: spectral-plus is special. Appl Math Comput 225:695–707

    Article  MathSciNet  Google Scholar 

  • Broomhead DS, Lowe D (1988a) Radial basis functions, multi-variable functional interpolation and adaptive networks. Royal Signals and Radar Establishment, Malvern

    Google Scholar 

  • Broomhead DS, Lowe D (1988b) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355

    MathSciNet  MATH  Google Scholar 

  • Carr JC, Fright RW, Beatson RK (1997) Surface interpolation with radial basis function for medical imaging. IEEE Trans Med Imaging 16(1):96–107

    Article  Google Scholar 

  • Chiba K, Obayashi S, Nakahashi K, Morino H (2005) High-fidelity multidisciplinary design optimization of aerostructural wing shape for regional jet. AIAA Pap 5080:2005

    Google Scholar 

  • Choi S, Alonso JJ, Kroo IM, Wintzer M (2008) Multifidelity design optimization of low-boom supersonic jets. J Aircr 45(1):106–118

    Article  Google Scholar 

  • Elsayed K, Vucinic D, d’Ippolito R, Lacor C (2012) Comparison between RBF and Kriging surrogates in design optimization of high dimensional problems. In: Proceedings of 3rd international conference on engineering optimization, Rio de Janeiro, Brazil, pp 1–5

  • Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley, Chichester

    Book  Google Scholar 

  • Gano SE (2005) Simulation-based design using variable fidelity optimization. University of Notre Dame, Indiana

    Google Scholar 

  • Gano Shawn E, Renaud John E, Sanders Brian (2005) Hybrid variable fidelity optimization by using a kriging-based scaling function. AIAA J 43:2422–2430

    Article  Google Scholar 

  • Gano SE, Renaud JE, Martin JD, Simpson TW (2006a) Update strategies for kriging models used in variable fidelity optimization. Struct Multidiscip Optim 32(4):287–298

    Article  Google Scholar 

  • Gano SE, Renaud JE, Agarwal H, Tovar A (2006b) Reliability-based design using variable-fidelity optimization. Struct Infrastruct Eng 2(3):247

    Article  Google Scholar 

  • Giunta AA et al. (1995) Variable-complexity multidisciplinary design optimization using parallel computers. Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute & State University, Blacksburg, pp 489–494

  • Gonzalez L, Whitney E, Srinivas K, Periaux J (2006) Optimum multidisciplinary and multi-objective wing design in CFD using evolutionary techniques. In: Deconinck H, Dick E (eds) Computational fluid dynamics. Springer, Berlin, pp 681–686

    Google Scholar 

  • Gumbert CR, Hou GJ-W, Newman PA (2005) High-fidelity computational optimization for 3-D flexible wings. Optim Eng 6(1):117–138

    Article  MathSciNet  MATH  Google Scholar 

  • Haftka RT (1991) Combining global and local approximations. AIAA J 29(9):1525

    Article  Google Scholar 

  • Hajela P (1986) Geometric programming strategies in large-scale structural synthesis. AIAA J 24(7):1173–1178

    Article  MATH  Google Scholar 

  • Heuer N, Tran T (2013) A mixed method for Dirichlet problems with radial basis functions. Comput Math Appl 66(10):2045–2055

    Article  MathSciNet  Google Scholar 

  • Huang X, Dudley J, Haftka RT, Grossman B, Mason WH (1996) Structural weight estimation for multidisciplinary optimization of a high-speed civil transport. J Aircr 33(3):608–616

    Article  Google Scholar 

  • Hutchison MG, Unger ER, Mason WH, Grossman B, Haftkat RT (1994) Variable-complexity aerodynamic optimization of a high-speed civil transport wing. J Aircr 31(1):110–116

    Article  Google Scholar 

  • Jackson P (2012) Jane’s all the world’s aircraft 2010–2011, IHS Jane’s all the world’s aircraft. Model center user guide and programmers reference, version 10.1. Phoenix Integration, Inc., Blacksburg

    Google Scholar 

  • Kraft D (1988) A software package for sequential quadratic programming. DLR German Aerospace Center—Institute for Flight Mechanics, Koln

    MATH  Google Scholar 

  • Lewis R, Nash S (2000) A multigrid approach to the optimization of sustems governed by differential equations. AIAA 4890:2000

    Google Scholar 

  • MacMillin PE, Dudley J, Mason WH, Grossman B, Haftka RT (1994) Trim, control and landing gear effects in variable-complexity HSCT design, AIAA Paper 94–4381, 5th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, Panama city beach, Fl., 7–9 September 1994

  • Marduel X, Tribes C, Trépanier J-Y (2006) Variable-fidelity optimization: efficiency and robustness. Optim Eng 7(4):479–500

    Article  MathSciNet  MATH  Google Scholar 

  • Mejia-Rodriguez G, Renaud JE, Tomar V (2008) A variable fidelity model management framework for designing multiphase materials. J Mech Des 130(9):091702–091713

    Article  Google Scholar 

  • Min B-Y, Lee J-W, Byun Y-H (2006) Numerical investigation of the shock interaction effect on the lateral jet controlled missile. Aerosp Sci Technol 10(5):385–393

    Article  MATH  Google Scholar 

  • Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Nguyen Nhu-Van (2011) An efficient multi-fidelity approach for the multi-disciplinary aerospace system design and optimization. Doctor of Philosophy, Konkuk University, Seoul

    Google Scholar 

  • Nguyen N-V, Jeon K-S, Lee J-W, Byun Y-H (2010) “Development of repetitively enhanced neural networks (RENN) for efficient missile design and optimization. In: Proceedings of Computational Science and Optimization (CSO), 2010 third international joint conference on, vol 1, pp 431–435

  • Nguyen Nhu-Van, Choi Seok-Min, Kim Wan-Sub, Kim Sangho, Lee Jae-Woo, Byun Yung-Hwan (2013) Multidisciplinary unmanned combat air vehicle (UCAV) system design implementing multi-fidelity models. JAerosp Sci Technol 26(1):200–210

    Article  Google Scholar 

  • Peigin S, Epstein B (2008) Multiconstrained aerodynamic design of business jet by CFD driven optimization tool. Aerosp Sci Technol 12(2):125–134

    Article  MATH  Google Scholar 

  • Peri D, Pinto A, Campana EF (2006) Multi-objective optimisation of expensive objective functions with variable fidelity models. Large-Scale Nonlinear Optim 83:223–241

    Article  MathSciNet  Google Scholar 

  • Praveen C, Duvigneau R (2007) Radial basis function and kriging metamodels for aerodynamic optimization, Technical report No. 123456789, INRIA, Sophia Antipolis, France

  • Robinson TD, Eldred MS, Willcox KE, Haimes R (2008) Surrogate-based optimization using multifidelity models with variable parameterization and corrected space map**. AIAA J 46:2814–2822

    Article  Google Scholar 

  • Rodríguez JF, Renaud JE, Watson LT (1997) Trust region augmented Lagrangian methods for sequential response. J Mech Des 15:58–66

    Google Scholar 

  • Rodríguez JF, Renaud JE, Wujek BA, Tappeta RV (2000) Trust region model management in multidisciplinary design optimization. J Comput Appl Math 124(1–2):139–154

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3:175–184. doi:10.1093/comjnl/3.3.175

    Article  MathSciNet  Google Scholar 

  • Schmitt V, Charpin F (1979) Pressure distributions on the ONERA-M6-wing at transonic mach numbers. Experimental data base for computer program assessment. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138

  • Takemiya T (2008) Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization. Georgia Institute of Technology, Atlanta

    Google Scholar 

  • Thokala P, Martins JRRA (2007) Variable-complexity optimization applied to airfoil design. Eng Optim 39(3):271

    Article  Google Scholar 

  • Woojoo Choi (2011) “Study on Preprocessing for Fluid-Structure Interaction Analysis of AADL3D Code”, Master Thesis, Konkuk

  • **a L, Zheng-hong G (2006) Application of variable-fidelity models to aerodynamic optimization. Appl Math Mech 27(8):1089–1095

    Article  MATH  Google Scholar 

  • **ng J-J, Lue R-M, Guo H-L, Li Y-Q, Fu H-Y, Yang T-M, Zhou Y-P (2014) Radial basis function network-based transformation for nonlinear partial least-squares as optimized by particle swarm optimization: application to QSAR studies. Chemom Intell Lab Syst 130:37–44

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge that this research was supported by Konkuk University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.V., Tyan, M. & Lee, JW. A modified variable complexity modeling for efficient multidisciplinary aircraft conceptual design. Optim Eng 16, 483–505 (2015). https://doi.org/10.1007/s11081-014-9273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-014-9273-7

Keywords

Navigation