Log in

Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The computation time required by standard finite difference methods with fixed timesteps for solving fractional diffusion equations is usually very large because the number of operations required to find the solution scales as the square of the number of timesteps. Besides, the solutions of these problems usually involve markedly different time scales, which leads to quite inhomogeneous numerical errors. A natural way to address these difficulties is by resorting to adaptive numerical methods where the size of the timesteps is chosen according to the behaviour of the solution. A key feature of these methods is then the efficiency of the adaptive algorithm employed to dynamically set the size of every timestep. Here we discuss two adaptive methods based on the step-doubling technique. These methods are, in many cases, immensely faster than the corresponding standard method with fixed timesteps and they allow a tolerance level to be set for the numerical errors that turns out to be a good indicator of the actual errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klafter, J., Lim, S.C., Metzler, R. (eds.): Fractional Dynamics: Recent Advances. World Scientific, Singapore (2011)

  2. Yang, Q.: Novel Analytical and Numerical Methods for Solving Fractional Dynamical Systems. Ph.D. thesis, Queensland University of Technology (2010)

  3. Li, C., Zeng, F.: Finite difference methods for fractional differential equations. Int. J. Bifurcat. Chaos 22, 1230014 (2012)

    Article  MathSciNet  Google Scholar 

  4. Deng, W.: Short memory principle and a predictor–corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 174–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, 1st edn. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  6. Ford, N., Simpson, A.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algoritm. 26, 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mainardi, F., Gorenflo, R.: On Mittag-Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math 118, 283–299 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    Google Scholar 

  9. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equationns. Prentice-Hall, Englewood Cliffs (1971). Sect. 5.4

    Google Scholar 

  10. Podlubny, I., Skovranek, T., Vinagre Jara, B.M., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos. T. Roy. Soc. A 371, 20120153 (2013)

    Article  MathSciNet  Google Scholar 

  11. Mustapha, K.: An implicit finite-difference time-step** method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31, 719–739 (2010)

    Article  MathSciNet  Google Scholar 

  12. Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algoritm. 61, 525–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yuste, S.B., Quintana-Murillo, J.: A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183, 2594–2600 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Quintana-Murillo, J., Yuste, S.B.: A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur. Phys. J. Spec. Top. 222, 1987–1998 (2013)

    Article  Google Scholar 

  15. Zhang, Y.-N., Sun, Z.-Z., Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

  16. Lopez-Fernandez, M., Sauter, S.: Generalized convolution quadrature with variable time step**. IMA J. Numer. Anal. 33, 1156–1175 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oldham, K.B., Spanier, J.: The fractional calculus; theory and applications of differentiation and integration to arbitrary order. Academic Press, New York (1974)

    MATH  Google Scholar 

  19. Liu, F., Zhuang, P., Anh, V., Turner, I.: A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 47, C48–C68 (2006)

    MathSciNet  Google Scholar 

  20. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Book  Google Scholar 

  22. See supplementary material at http://www.eweb.unex.es/eweb/fisteor/santos/Adap.zip where a mathematica code demonstrating how our calculations are carried out is available

  23. Yuste, S.B., Quintana-Murillo, J.: Corrigendum to A finite difference method with non-uniform timesteps for fractional diffusion equations [Comput Phys. Comm. 183, 2594–2600 (2012)]. Comput. Phys. Commun. 185, 1192 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mathai, A., Saxena, R.: The H-Function with Applications in Statistics and other Disciplines. Wiley, New York (1978)

    MATH  Google Scholar 

  25. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santos B. Yuste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuste, S.B., Quintana-Murillo, J. Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. Numer Algor 71, 207–228 (2016). https://doi.org/10.1007/s11075-015-9998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9998-1

Keywords

Mathematics Subject Classification (2010)

Navigation