Log in

A practical solution for KKT systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider KKT systems of linear equations with a 2 × 2 block indefinite matrix whose (2, 2) block is zero. Such systems arise in many applications. Treating such matrices would encounter some intricacies, especially when its (1, 1) block, i.e., the stiffness matrix in term of computational mechanics, is rank-deficient. It is the rank-deficiency of the stiffness matrix that leads to the so-called rigid-displacement issue. This is believed to be one of the main reasons that many programmers would unwillingly give up the Lagrange multiplier method but select the penalty method. Based on the Sherman–Morrison formula and the conventional LDLT decomposition for symmetric positive definite matrices, a robust direct solution is proposed, which is amenable to the conventional finite element codes, competent for both nonsingular and singular stiffness matrices, and particularly suitable to parallel computation. As a paradigm, the application to the element-free Galerkin method (EFGM) with the moving least squares interpolation is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    MATH  Google Scholar 

  2. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 1, 4th edition. McGraw-Hill, London (1989)

    Google Scholar 

  3. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, 2nd edition. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  5. Golub, G.H., Loan, C.F.V.: Matrix Computations, 2nd edition. The Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  6. Duff, I.S., Reid, J.K.: Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 22, 227–257 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nicholson, D.W.: Non-iterative solution of finite element equations in incompressible solids. Acta Mech. 167, 189–195 (2004)

    Article  MATH  Google Scholar 

  8. Simo, J.C., Laursen, T.A.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42, 97–116 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zheng, H., Liu, D.F., Lee, C.F., Yue, Z.Q.: A sophisticated node-pair model for interface problems. Comput. Geotech. 31, 137–153 (2004)

    Article  Google Scholar 

  10. Golub, G.H., Greif, C.: On solving block-structured indefinite linear systems. SIAM J. Sci. Comput. 24, 2076–2092 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heath, M.T.: Scientific Computing, An Introductory Survey, 2nd edition. McGraw-Hill, London (2002)

    Google Scholar 

  12. Luis, M.H.: Alternating oblique projections for coupled linear systems, Numer. Algorithms 38, 285–303 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wu, X., Silva, B.P.B., Yuan, J.Y.: Conjugate gradient method for rank deficient saddle point problems. Numer. Algorithms 35, 139–154 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Axelsson, O., Barker, V.A.: Finite Element Solution of Boundary Value Problems: Theory and Computation. Academic, Orlando, FL (1984)

    MATH  Google Scholar 

  15. Henderson, H.V., Searle, S.R.: On deriving the inverse of a sum of matrices. SIAM Rev. 23, 53–60 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zheng, H., Liu, D.F., Lee, C.F., Tham, L.G.: Displacement-controlled method and its applications to material nonlinearity. Int. J. Numer. Anal. Methods Geomech. 29, 209–226 (2005)

    Article  MATH  Google Scholar 

  17. Akgun, M.A., Garcelon, J.H., Haftka, R.T.: Fast exact linear and non-linear structural reanalysis and the Sherman–Morrison–Woodburg formulas. Int. J. Numer. Methods Eng. 50, 1587–1606 (2001)

    Article  Google Scholar 

  18. Stewart G.W.: Modifying pivot elements in Gaussian elimination. Math. Comput. 28, 527–542 (1974)

    Google Scholar 

  19. Li, S.F., Liu, W.K.: Meshfree Particle Methods. Springer, New York (2004)

    MATH  Google Scholar 

  20. Atluri, S.N.: The Meshless Method (MLPG) for Domain & BIE Discretizations. Tech Science Press, Forsyth (2004)

    MATH  Google Scholar 

  21. Belytschko, T., Lu, Y.Y., Gu, L.: Element free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhu, T., Atluri, S.N.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput. Mech. 21, 211–222 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zheng.

Additional information

Funded by the National Natural Science Foundation of China (NSFC), Project no. 90510019.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Li, J. A practical solution for KKT systems. Numer Algor 46, 105–119 (2007). https://doi.org/10.1007/s11075-007-9129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9129-8

Keywords

Navigation