Log in

Internal resonance vibration-based energy harvesting

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Taking advantage of undesirable ambient vibration resources, vibration-based energy harvesters (VEHs) aim to power smart electronic devices by converting kinetic energy into electricity via the designed resonance regions for optimized power levels. Realistic environmental resources have led to the research field predominantly focused on the nonlinear themes—broadening operational bandwidth through inherent and externally induced nonlinearities. Internal resonance, associated with nonlinearity in a multi-degree-of-freedom system, has remained an active research topic due to its rich dynamic behaviors since the last century. The effects of nonlinear modal couplings permit energy transfer between the internally coupled modes and have yielded various applications from vibration control of large-scale facilities to sensing in micro-electro-mechanical systems (MEMS). With double-jump, saturation phenomena, and flexibility of scavenging high-amplitude vibration sources at low ambient frequencies and outputting higher frequency responses, the idea of internal resonance energy harvesters gradually emerged and matured within a decade. The review aims to summarize the utilization of the internal resonance in VEHs through underlying principles and mechanisms, assess the performance of the state-of-the-art devices from a mechanical and structural point of view, and provide tentative guidance for future investigations on internal resonance vibratory energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Hosseinkhani, A., Younesian, D., Eghbali, P., Moayedizadeh, A., Fassih, A.: Sound and vibration energy harvesting for railway applications: A review on linear and nonlinear techniques. Energy Rep. 7, 852–874 (2021)

    Google Scholar 

  2. Toshiyoshi, H., Ju, S., Honma, H., Ji, C.-H., Fujita, H.: Mems vibrational energy harvesters. Sci. Technol. Adv. Mater. 20, 124–143 (2019)

    Google Scholar 

  3. Ali, F., Raza, W., Li, X., Gul, H., Kim, K.-H.: Piezoelectric energy harvesters for biomedical applications. Nano Energy 57, 879–902 (2019)

    Google Scholar 

  4. Iqbal, M., Nauman, M.M., Khan, F.U., Abas, P.E., Cheok, Q., Iqbal, A., Aissa, B.: Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review. Int. J. Energy Res. 45, 65–102 (2021)

    Google Scholar 

  5. Prajwal, K.T., Manickavasagam, K., Suresh, R.: A review on vibration energy harvesting technologies: Analysis and technologies. Eur. Phys. J. Spec. Top. 231, 1359–1371 (2022)

    Google Scholar 

  6. Salazar, R., Serrano, M., Abdelkefi, A.: Fatigue in piezoelectric ceramic vibrational energy harvesting: a review. Appl. Energy 270, 115161 (2020)

    Google Scholar 

  7. Costanzo, L., Vitelli, M.: Tuning techniques for piezoelectric and electromagnetic vibration energy harvesters. Energies 13, 527 (2020)

    Google Scholar 

  8. Dong, L., Closson, A.B., **, C., Trase, I., Chen, Z., Zhang, J.X.J.: Vibration-energy-harvesting system: transduction mechanisms, frequency tuning techniques, and biomechanical applications. Adv. Mater. Technol. 4, 1900177 (2019)

    Google Scholar 

  9. Maamer, B., Boughamoura, A., Fath El-Bab, A.M.R., Francis, L.A., Tounsi, F.: A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Convers. Manage. 199, 111973 (2019)

    Google Scholar 

  10. Daqaq, M.F., Masana, R., Erturk, A., Dane-Quinn, D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)

    Google Scholar 

  11. Montegiglio, P., Maruccio, C., Acciani, G., Rizzello, G., Seelecke, S.: Nonlinear multi-scale dynamics modeling of piezoceramic energy harvesters with ferroelectric and ferroelastic hysteresis. Nonlinear Dyn. 100, 1985–2003 (2020)

    Google Scholar 

  12. Ramakrishnan, S., Edlund, C.: Stochastic stability of a piezoelectric vibration energy harvester under a parametric excitation and noise-induced stabilization. Mech. Syst. Signal Process. 140, 106566 (2020)

    Google Scholar 

  13. Chen, L.-Q., Jiang, W.-A.: Internal resonance energy harvesting. J. Appl. Mech. 82, 031004 (2015)

    Google Scholar 

  14. Farokhi, H., **a, Y., Erturk, A.: Experimentally validated geometrically exact model for extreme nonlinear motions of cantilevers. Nonlinear Dyn. 107, 457–475 (2022)

    Google Scholar 

  15. Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Yang, T., Zhou, S., Fang, S., Qin, W., Inman, D.J.: Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Appl. Phys. Rev. 8, 031317 (2021)

    Google Scholar 

  17. Jia, Y.: Review of nonlinear vibration energy harvesting: Duffing, bistability, parametric, stochastic and others. J. Intell. Mater. Syst. Struct. 31, 921–944 (2020)

    Google Scholar 

  18. Zhou, S., Lallart, M., Erturk, A.: Multistable vibration energy harvesters: principle, progress, and perspectives. J. Sound Vib. 528, 116886 (2022)

    Google Scholar 

  19. Cao, Y., Derakhshani, M., Fang, Y., Huang, G., Cao, C.: Bistable structures for advanced functional systems. Adv. Func. Mater. 31, 2106231 (2021)

    Google Scholar 

  20. Ahmad, M.M., Khan, N.M., Khan, F.U.: Review of frequency up-conversion vibration energy harvesters using impact and plucking mechanism. Int. J. Energy Res. 45, 15609–15645 (2021)

    Google Scholar 

  21. Nayfeh, A.H., Balachandran, B.: Modal interactions in dynamical and structural systems. Appl. Mech. Rev. 42, S175–S201 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational, and Experimental Methods. Wiley, New York (2000)

    MATH  Google Scholar 

  23. Chen, L.-Q., Zhang, Y.-L., Zhang, G.-C., Ding, H.: Evolution of the double-jum** in pipes conveying fluid flowing at the supercritical speed. Int. J. Non-Linear Mech. 58, 11–21 (2014)

    Google Scholar 

  24. Chen, L.-Q., Zhang, Y.-L.: Multi-scale analysis on nonlinear gyroscopic systems with multi-degree-of-freedoms. J. Sound Vib. 333, 4711–4723 (2014)

    Google Scholar 

  25. Chen, L.-Q., Zhang, G.-C., Ding, H.: Internal resonance in forced vibration of coupled cantilevers subjected to magnetic interaction. J. Sound Vib. 354, 196–218 (2015)

    Google Scholar 

  26. Tuer, K.L., Golnaraghi, M.F., Wang, D.: Development of a generalised active vibration suppression strategy for a cantilever beam using internal resonance. Nonlinear Dyn. 5, 131–151 (1994)

    Google Scholar 

  27. Eftekhari, M., Ziaei-Rad, S., Mahzoon, M.: Vibration suppression of a symmetrically cantilever composite beam using internal resonance under chordwise base excitation. Int. J. Non-Linear Mech. 48, 86–100 (2013)

    Google Scholar 

  28. Shami, Z.A., Giraud-Audine, C., Thomas, O.: A nonlinear piezoelectric shunt absorber with a 2:1 internal resonance: theory. Mech. Syst. Signal Process. 170, 108768 (2022)

    Google Scholar 

  29. Oueini, S.S., Golnaraghi, M.F.: Experimental implementation of the internal resonance control strategy. J. Sound Vib. 191, 377–396 (1996)

    Google Scholar 

  30. Asadi, K., Yu, J., Cho, H.: Nonlinear couplings and energy transfers in micro- and nano-mechanical resonators: intermodal coupling, internal resonance and synchronization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170141 (2018)

    Google Scholar 

  31. Erturk, A., Renno, J., Inman, D.: Piezoelectric Energy Harvesting from an l-Shaped Beam-Mass Structure, SPIE (2008)

  32. Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an l-shaped beam-mass structure with an application to uavs. J. Intell. Mater. Syst. Struct. 20, 529–544 (2009)

    Google Scholar 

  33. Tsutsumi, E. del Rosario, Z., Lee, C.: Vibration Energy Harvesting Using the Nonlinear Oscillations of a Magnetostrictive Material, SPIE, (2012)

  34. Iliuk, I., da Fonseca Brasil, R.M.L.R., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Piqueira, J.R.C.: Potential application in energy harvesting of intermodal energy exchange in a frame: Fem analysis. Int. J. Struct. Stab. Dyn. 14, 1440027 (2014)

    Google Scholar 

  35. Karimpour, H., Eftekhari, M.: Exploiting internal resonance for vibration suppression and energy harvesting from structures using an inner mounted oscillator. Nonlinear Dyn. 77, 699–727 (2014)

    MATH  Google Scholar 

  36. Xu, J., Tang, J.: Piezoelectric Cantilever-Pendulum for Multi-Directional Energy Harvesting with Internal Resonance, SPIE (2015)

  37. Harne, R., Sun, A., Wang, K.W.: An Investigation on Vibration Energy Harvesting Using Nonlinear Dynamic Principles Inspired by Trees, SPIE (2015)

  38. Chen, L., Jiang, W.: A piezoelectric energy harvester based on internal resonance. Acta. Mech. Sin. 31, 223–228 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Engel, E., Wei, J., Lee, C.: Enhanced Vibration Energy Harvesting Using Nonlinear Oscillations, SPIE (2015)

  40. Lan, C., Qin, W., Deng, W.: Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam. Appl. Phys. Lett. 107, 093902 (2015)

    Google Scholar 

  41. Haddow, A.G., Barr, A.D.S., Mook, D.T.: Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure. J. Sound Vib. 97, 451–473 (1984)

    MathSciNet  Google Scholar 

  42. Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224, 2867–2880 (2015)

    Google Scholar 

  43. Aravindan, M., Ali, S.F.: Exploring 1:3 internal resonance for broadband piezoelectric energy harvesting. Mech. Syst. Signal Process. 153, 107493 (2021)

    Google Scholar 

  44. Garg, A., Dwivedy, S.K.: Nonlinear dynamics of parametrically excited piezoelectric energy harvester with 1:3 internal resonance. Int. J. Non-Linear Mech. 111, 82–94 (2019)

    Google Scholar 

  45. Garg, A., Dwivedy, S.K.: Dynamic analysis of piezoelectric energy harvester under combination parametric and internal resonance: a theoretical and experimental study. Nonlinear Dyn. 101, 2107–2129 (2020)

    Google Scholar 

  46. Guillot, V., Givois, A., Colin, M., Thomas, O., Savadkoohi, A.T., Lamarque, C.-H.: Theoretical and experimental investigation of a 1:3 internal resonance in a beam with piezoelectric patches. J. Vib. Control 26, 1119–1132 (2020)

    MathSciNet  Google Scholar 

  47. Jiang, W.-A., Chen, L.-Q., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn. 85, 2507–2520 (2016)

    Google Scholar 

  48. **ong, L., Tang, L., Ding, H., Chen, L., Mace, B.: Broadband Performance of a Piezoelectric Energy Harvester Based on the Internal Resonance of Buckled Beam, SPIE (2016)

  49. Nayfeh, A.H.: Resolving controversies in the application of the method of multiple scales and the generalized method of averaging. Nonlinear Dyn. 40, 61–102 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Harne, R.L., Sun, A., Wang, K.W.: Leveraging nonlinear saturation-based phenomena in an l-shaped vibration energy harvesting system. J. Sound Vib. 363, 517–531 (2016)

    Google Scholar 

  51. Chen, L.-Q., Jiang, W.-A., Panyam, M., Daqaq, M.F.: A broadband internally resonant vibratory energy harvester. J. Vib. Acoust. 138, 061007 (2016)

    Google Scholar 

  52. Wei, J., Engel, E., Lee, C.L.: An extended-range vibration energy harvester based on internal resonance. IEEE Sens. J. 18, 995–1005 (2018)

    Google Scholar 

  53. Nie, X., Tan, T., Yan, Z., Yan, Z., Hajj, M.R.: Broadband and high-efficient l-shaped piezoelectric energy harvester based on internal resonance. Int. J. Mech. Sci. 159, 287–305 (2019)

    Google Scholar 

  54. Sharifi-Moghaddam, S., Tikani, R., Ziaei-Rad, S.: Energy harvesting from nonlinear vibrations of an l-shaped beam using piezoelectric patches. J. Braz. Soc. Mech. Sci. Eng. 43, 158 (2021)

    Google Scholar 

  55. Haxton, R.S., Barr, A.D.S.: The autoparametric vibration absorber. J. Eng. Ind. 94, 119–125 (1972)

    Google Scholar 

  56. Golnaraghi, M.F.: Vibration suppression of flexible structures using internal resonance. Mech. Res. Commun. 18, 135–143 (1991)

    MATH  Google Scholar 

  57. Nayfeh, A.H., Mook, D.T., Marshall, L.R.: Nonlinear coupling of pitch and roll modes in ship motions. J. Hydronaut. 7, 145–152 (1973)

    Google Scholar 

  58. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., Rodrigues de Pontes, B., Felix, J.L.P., Bueno, Á.M.: A non-ideal portal frame energy harvester controlled using a pendulum. Eur. Phys. J. Spec. Top. 222, 1575–1586 (2013)

    Google Scholar 

  59. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R., de Pontes, B.R., Felix, J.L., Bueno, Á.M.: Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. J. Intell. Mater. Syst. Struct. 25, 417–429 (2014)

    Google Scholar 

  60. Felix, J.L.P., Bianchin, R.P., Almeida, A., Balthazar, J.M., Rocha, R.T., Brasil, R.M.: On energy transfer between vibration modes under frequency-varying excitations for energy harvesting. Appl. Mech. Mater. 849, 65–75 (2016)

    Google Scholar 

  61. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Comments on energy harvesting on a 2:1 internal resonance portal frame support structure, using a nonlinear-energy sink as a passive controller. Int. Rev. Mech. Eng. 10, 147–156 (2016)

    Google Scholar 

  62. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance. Meccanica 52, 2583–2602 (2017)

    MathSciNet  Google Scholar 

  63. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V.: Using passive control by a pendulum in a portal frame platform with piezoelectric energy harvesting. J. Vib. Control 24, 3684–3697 (2018)

    MathSciNet  Google Scholar 

  64. Felix, J.L.P., Balthazar, J.M., Rocha, R.T., Tusset, A.M., Janzen, F.C.: On vibration mitigation and energy harvesting of a non-ideal system with autoparametric vibration absorber system. Meccanica 53, 3177–3188 (2018)

    MathSciNet  Google Scholar 

  65. Rocha, R.T., Tusset, A.M., Ribeiro, M.A., Lenz, W.B., Balthazar, J.M.: Remarks on energy harvesting of nonlinear charge and voltage piezoelectric models in a two-degrees-of-freedom nonlinear portal frame model. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 235, 4760–4767 (2021)

    Google Scholar 

  66. Fan, Y., Ghayesh, M.H., Lu, T.-F.: High-efficient internal resonance energy harvesting: Modelling and experimental study. Mech. Syst. Signal Process. 180, 109402 (2022)

    Google Scholar 

  67. Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osório, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20, 545–557 (2009)

    Google Scholar 

  68. Nayfeh, A.H., Pai, P.F.: Non-linear non-planar parametric responses of an inextensional beam. Int. J. Non-Linear Mech. 24, 139–158 (1989)

    MATH  Google Scholar 

  69. Fan, Y., Ghayesh, M.H., Lu, T.-F.: Enhanced nonlinear energy harvesting using combined primary and parametric resonances: Experiments with theoretical verifications. Energy Convers. Manage. 221, 113061 (2020)

    Google Scholar 

  70. Fan, Y., Ghayesh, M.H., Lu, T.-F.: A broadband magnetically coupled bistable energy harvester via parametric excitation. Energy Convers. Manage. 244, 114505 (2021)

    Google Scholar 

  71. Fan, Y., Ghayesh, M.H., Lu, T.-F., Amabili, M.: Design, development, and theoretical and experimental tests of a nonlinear energy harvester via piezoelectric arrays and motion limiters. Int. J. Non-Linear Mech. 142, 103974 (2022)

    Google Scholar 

  72. Kurmann, L., Hoffmann, D., Folkmer, B., Manoli, Y., Woias, P., Anderegg, R.: Autoparametric resonance systems for vibration-based energy harvesters. J. Phys. Conf. Ser. 660, 012070 (2015)

    Google Scholar 

  73. Yan, Z., Hajj, M.R.: Energy harvesting from an autoparametric vibration absorber. Smart Mater. Struct. 24, 115012 (2015)

    Google Scholar 

  74. Yan, Z., Hajj, M.R.: Nonlinear performances of an autoparametric vibration-based piezoelastic energy harvester. J. Intell. Mater. Syst. Struct. 28, 254–271 (2017)

    Google Scholar 

  75. Tan, T., Wang, Z., Zhang, L., Liao, W.-H., Yan, Z.: Piezoelectric autoparametric vibration energy harvesting with chaos control feature. Mech. Syst. Signal Process. 161, 107989 (2021)

    Google Scholar 

  76. Kecik, K.: Assessment of energy harvesting and vibration mitigation of a pendulum dynamic absorber. Mech. Syst. Signal Process. 106, 198–209 (2018)

    Google Scholar 

  77. Zhang, A., Sorokin, V., Li, H.: Energy harvesting using a novel autoparametric pendulum absorber-harvester. J. Sound Vib. 499, 116014 (2021)

    Google Scholar 

  78. Tan, T., Yan, Z., Zou, Y., Zhang, W.: Optimal dual-functional design for a piezoelectric autoparametric vibration absorber. Mech. Syst. Signal Process. 123, 513–532 (2019)

    Google Scholar 

  79. Hou, S., Teng, Y.-Y., Zhang, Y.-W., Zang, J.: Enhanced energy harvesting of a nonlinear energy sink by internal resonance. Int. J. Appl. Mech. 11, 1950100 (2019)

    Google Scholar 

  80. Kurmann, L., Jia, Y., Manoli, Y., Woias, P.: Magnetically levitated autoparametric broadband vibration energy harvesting. J. Phys. Conf. Ser. 773, 012006 (2016)

    Google Scholar 

  81. Ding, H., Chen, L.-Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020)

    Google Scholar 

  82. **e, Z., Huang, B., Fan, K., Zhou, S., Huang, W.: A magnetically coupled nonlinear t-shaped piezoelectric energy harvester with internal resonance. Smart Mater. Struct. 28, 11LT01 (2019)

    Google Scholar 

  83. Wu, Y., Ji, H., Qiu, J., Liu, W., Zhao, J.: An internal resonance based frequency up-converting energy harvester. J. Intell. Mater. Syst. Struct. 29, 2766–2781 (2018)

    Google Scholar 

  84. Wu, Y., Ji, H., Qiu, J., Han, L.: A 2-degree-of-freedom cubic nonlinear piezoelectric harvester intended for practical low-frequency vibration. Sens. Actuators A 264, 1–10 (2017)

    Google Scholar 

  85. **ong, L., Tang, L., Mace, B.R.: A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dyn. 91, 1817–1834 (2018)

    Google Scholar 

  86. Yang, W., Towfighian, S.: A hybrid nonlinear vibration energy harvester. Mech. Syst. Signal Process. 90, 317–333 (2017)

    Google Scholar 

  87. **e, Z., Wang, T., Kwuimy, C.A.K., Shao, Y., Huang, W.: Design, analysis and experimental study of a t-shaped piezoelectric energy harvester with internal resonance. Smart Mater. Struct. 28, 085027 (2019)

    Google Scholar 

  88. Yung, K.W., Landecker, P.B., Villani, D.D.: An analytic solution for the force between two magnetic dipoles. Magn. Electr. Sep. 9, 079537 (1998)

    Google Scholar 

  89. Tan, D., Leng, Y.G., Gao, Y.J.: Magnetic force of piezoelectric cantilever energy harvesters with external magnetic field. Eur. Phys. J. Spec. Top. 224, 2839–2853 (2015)

    Google Scholar 

  90. Eshtehardiha, R., Tikani, R., Ziaei-Rad, S.: Experimental and numerical investigation of energy harvesting from double cantilever beams with internal resonance. J. Sound Vib. 500, 116022 (2021)

    Google Scholar 

  91. Eshtehardiha, R., Tikani, R., Ziaei-Rad, S.: Investigating the multiple scales method based on a new scaling for energy harvesting from a double cantilever beam with internal resonance. Meccanica 57, 1281–1306 (2022)

    MathSciNet  Google Scholar 

  92. Wu, Y., Qiu, J., Ji, H.: A frequency up-converting harvester based on internal resonance in 2-dof nonlinear systems. J. Phys. Conf. Ser. 773, 012092 (2016)

    Google Scholar 

  93. Wu, Y., Qiu, J., Kojima, F., Ji, H., **e, W., Zhou, S.: Design methodology of a frequency up-converting energy harvester based on dual-cantilever and pendulum structures. AIP Adv. 9, 045312 (2019)

    Google Scholar 

  94. **ong, L., Tang, L., Mace, B.R.: Internal resonance with commensurability induced by an auxiliary oscillator for broadband energy harvesting. Appl. Phys. Lett. 108, 203901 (2016)

    Google Scholar 

  95. Wu, B.S., Sun, W.P., Lim, C.W.: An analytical approximate technique for a class of strongly non-linear oscillators. Int. J. Non-Linear Mech. 41, 766–774 (2006)

    MathSciNet  MATH  Google Scholar 

  96. Mickens, R.E.: Oscillations in Planar Dynamic Systems, World Scientific, (1996)

  97. Yang, W., Towfighian, S.: Nonlinear Vibration Energy Harvesting Based on Variable Double Well Potential Function, SPIE (2016)

  98. Yang, W., Towfighian, S.: Low frequency energy harvesting with a variable potential function under random vibration. Smart Mater. Struct. 27, 114004 (2018)

    Google Scholar 

  99. Xu, J., Tang, J.: Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance. Appl. Phys. Lett. 107, 213902 (2015)

    Google Scholar 

  100. Wang, H., Tang, J.: Electromagnetic Energy Harvesting from a Dual-Mass Pendulum Oscillator, SPIE (2016)

  101. Xu, J., Tang, J.: Modeling and analysis of piezoelectric cantilever-pendulum system for multi-directional energy harvesting. J. Intell. Mater. Syst. Struct. 28, 323–338 (2017)

    Google Scholar 

  102. Jiang, W., Han, X., Chen, L., Bi, Q.: Improving energy harvesting by internal resonance in a spring-pendulum system. Acta. Mech. Sin. 36, 618–623 (2020)

    MathSciNet  Google Scholar 

  103. Bao, B., Zhou, S., Wang, Q.: Interplay between internal resonance and nonlinear magnetic interaction for multi-directional energy harvesting. Energy Convers. Manage. 244, 114465 (2021)

    Google Scholar 

  104. Wu, Y., Li, S., Fan, K., Ji, H., Qiu, J.: Investigation of an ultra-low frequency piezoelectric energy harvester with high frequency up-conversion factor caused by internal resonance mechanism. Mech. Syst. Signal Process. 162, 108038 (2022)

    Google Scholar 

  105. Liu, D., Li, H., Feng, H., Yalkun, T., Hajj, M.R.: A multi-frequency piezoelectric vibration energy harvester with liquid filled container as the proof mass. Appl. Phys. Lett. 114, 213902 (2019)

    Google Scholar 

  106. Zhang, A., Sorokin, V., Li, H.: Dynamic analysis of a new autoparametric pendulum absorber under the effects of magnetic forces. J. Sound Vib. 485, 115549 (2020)

    Google Scholar 

  107. Sorokin, V.S., Thomsen, J.J.: Vibration suppression for strings with distributed loading using spatial cross-section modulation. J. Sound Vib. 335, 66–77 (2015)

    Google Scholar 

  108. Wang, G.-X., Ding, H., Chen, L.-Q.: Dynamic effect of internal resonance caused by gravity on the nonlinear vibration of vertical cantilever beams. J. Sound Vib. 474, 115265 (2020)

    Google Scholar 

  109. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81, 425–435 (2015)

    MathSciNet  MATH  Google Scholar 

  110. Ribeiro e Silva, S., Gomes, R.P.F., Lopes, B.S., Carrelhas, A.A.D., Gato, L.M.C., Henriques, J.C.C., Gordo, J.M., Falcão, A.F.O.: Model testing of a floating wave energy converter with an internal u-shaped oscillating water column. Energy Convers. Manage. 240, 114211 (2021)

    Google Scholar 

  111. Giorgi, G., Gomes, R.P.F., Bracco, G., Mattiazzo, G.: Numerical investigation of parametric resonance due to hydrodynamic coupling in a realistic wave energy converter. Nonlinear Dyn. 101, 153–170 (2020)

    Google Scholar 

  112. Khasawneh, M.A., Daqaq, M.F.: Internally-resonant broadband point wave energy absorber. Energy Convers. Manage. 247, 114751 (2021)

    Google Scholar 

  113. Liu, H., Gao, X.: Vibration energy harvesting under concurrent base and flow excitations with internal resonance. Nonlinear Dyn. 96, 1067–1081 (2019)

    MATH  Google Scholar 

  114. Nie, X., Tan, T., Yan, Z., Yan, Z., Zhang, W.: Ultra-wideband piezoelectric energy harvester based on stockbridge damper and its application in smart grid. Appl. Energy 267, 114898 (2020)

    Google Scholar 

  115. Jiang, W., Li, Y., Ma, X., Wang, Y., Chen, L., Bi, Q.: Exploiting internal resonance to improve flow energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 33, 459–473 (2022)

    Google Scholar 

  116. Sun, W., Guo, C., Cheng, G., He, S., Yang, Z., Ding, J.: Performance enhancement of gallo**-based piezoelectric energy harvesting by exploiting 1:1 internal resonance of magnetically coupled oscillators. Nonlinear Dyn. 108, 3347–3366 (2022)

    Google Scholar 

  117. Xu, C., Zhao, L.: Investigation on the characteristics of a novel internal resonance gallo** oscillator for concurrent aeroelastic and base vibratory energy harvesting. Mech. Syst. Signal Process. 173, 109022 (2022)

    Google Scholar 

  118. Fan, Y., Ghayesh, M., Lu, T.-F.: A proof-of-concept study on an internal-resonance-based piezoelectric energy harvester with coupled three-dimensional bending-torsion motions. J. Vib. Acoust. 144, 061004 (2022)

    Google Scholar 

  119. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Google Scholar 

  120. Chen, C., Zanette, D.H., Czaplewski, D.A., Shaw, S., López, D.: Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nat. Commun. 8, 15523 (2017)

    Google Scholar 

  121. Ouakad, H.M., Sedighi, H.M., Younis, M.I.: One-to-one and three-to-one internal resonances in mems shallow arches. J. Comput. Nonlinear Dyn. 12, 051025 (2017)

    Google Scholar 

  122. Jia, Y., Du, S., Arroyo, E., Seshia, A.A.: Autoparametric resonance in a piezoelectric mems vibration energy harvester. IEEE Micro Electro Mech. Syst. (MEMS) 2018, 226–229 (2018)

    Google Scholar 

  123. Hajjaj, A.Z., Alfosail, F.K., Younis, M.I.: Two-to-one internal resonance of mems arch resonators. Int. J. Non-Linear Mech. 107, 64–72 (2018)

    Google Scholar 

  124. Alfosail, F.K., Hajjaj, A.Z., Younis, M.I.: Theoretical and experimental investigation of two-to-one internal resonance in mems arch resonators. J. Comput. Nonlinear Dyn. 14, 011001 (2018)

    Google Scholar 

  125. Eichler, A., del Álamo-Ruiz, M., Plaza, J.A., Bachtold, A.: Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109, 025503 (2012)

    Google Scholar 

  126. De Alba, R., Massel, F., Storch, I.R., Abhilash, T.S., Hui, A., McEuen, P.L., Craighead, H.G., Parpia, J.M.: Tunable phonon-cavity coupling in graphene membranes. Nat. Nanotechnol. 11, 741–746 (2016)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China [Grant Nos. 62188101, 12132002, and 11872159].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LQ., Fan, Y. Internal resonance vibration-based energy harvesting. Nonlinear Dyn 111, 11703–11727 (2023). https://doi.org/10.1007/s11071-023-08464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08464-0

Keywords

Navigation