Log in

Fault estimation for nonlinear systems: an observer structure design criterion technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper mainly focuses on the observers design and fault estimation for nonlinear systems with faults. The considered nonlinear system is assumed to be represented by T-S fuzzy models or from a LPV system, where the coefficient matrix of measured output is time-varying. A lower triangle matrix (LTM)-based observer structure design criterion (OSDC) for the given nonlinear system is proposed. Under the proposed LTM-based OSDC, an estimation observer with generality and relaxed constraints is designed, by which the fault occurring in the system can be well estimated online. Linear matrix inequality (LMI)-based stability conditions for the estimation error dynamics are given. Simulation examples test the proposed OSDC technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Li, Y.X., Yang, G.-H.: Robust fuzzy adaptive fault-tolerant control for a class of nonlinear systems with mismatched uncertainties and actuator faults. Nonlinear Dyn. 81, 395–409 (2015)

    Article  Google Scholar 

  2. Liu, C., Jiang, B., Zhang K., Ding, S. X.: Hierarchical structure-based fault-tolerant tracking control of multiple 3-DOF laboratory helicopters. IEEE Trans. Syst., Man, Cyber. (2021). https://doi.org/10.1109/TSMC.2021.3095073.

  3. Wu, L.-B., Park, J. H., **e X.-P., Li, Y.-F.: Adaptive asymptotic tracking control of uncertain nonlinear systems based on Taylor decoupling and event-trigger. IEEE Trans. Syst., Man, Cyber. 2020, https://doi.org/10.1109/TSMC.2020.3034579.

  4. Liu, L., Zhao, W., Liu, Y.-J., Tong, S., Wang, Y.-Y.: Adaptive finite-time neural networks control of nonlinear systems with multiple objective constraints and application to electromechanical system. IEEE Trans. Neural Netw. Learn. Syst. 32(12), 5416–5426 (2021)

    Article  MathSciNet  Google Scholar 

  5. Zou, W., Ahn, C.K., **ang, Z.: Fuzzy-approximation-based distributed fault-tolerant consensus for heterogeneous switched nonlinear multiagent systems. IEEE Trans. Fuzzy Syst. 29(10), 2916–2925 (2021)

    Article  Google Scholar 

  6. Thabet, A., GBH, F., Boutayeb, M.: Observer-based feedback stabilization for Lipschitz nonlinear systems with extension to \(H_{\infty }\) performance analysis: design and experimental results. IEEE Trans. Control Syst. Tech. 26(1), 321-328 (2018)

  7. Zhu, J.-W., Yang, G.-H., Wang, H., Wang, F.: Fault estimation for a class of nonlinear systems based on intermediate estimator. IEEE Trans. Automat. Control 61(9), 2518–2524 (2016)

    Article  MathSciNet  Google Scholar 

  8. Li, J., Huang, S.-J.: Integrated observer based fault estimation for a class of Lipschitz nonlinear systems. Int. J. Robust Nonlinear Control 30(14), 5678–5692 (2020)

    Article  MathSciNet  Google Scholar 

  9. Liu, L., Liu, Y.-J., Chen, A., Tong, S., Philip Chen, C. L.: Integral barrier Lyapunov function based adaptive control for switched nonlinear systems. Sci. China Inf. Sci. 63(3), 132203:1-132203:14 (2020)

  10. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  Google Scholar 

  11. Shen, Q., Jiang, B., Cocquempot, V.: Fault tolerant control for T-S fuzzy systems with application to near space hypersonic vehicle with actuator faults. IEEE Trans. Fuzzy Syst. 20(4), 652–665 (2012)

    Article  Google Scholar 

  12. Zhang, H.-G., Zhang, J.-L., Yang, G.-H., Luo, Y.-H.: Leader-based optimal coordination control for the consensus problem of multiagent differential games via fuzzy adaptive dynamic programming. IEEE Trans. Fuzzy Systs. 23(1), 152–163 (2015)

    Article  Google Scholar 

  13. Zhang, K., Jiang, B., Staroswiecki, M.: Dynamic output feedback fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults. IEEE Trans. Fuzzy Syst. 18(1), 194–201 (2010)

    Article  Google Scholar 

  14. Huang, S.-J., Yang, G.-H.: Fault tolerant controller design for T-S fuzzy systems with time-varying delay and actuator faults: A k-step-fault-estimation approach. IEEE Trans. Fuzzy Syst. 22(6), 1526–1540 (2014)

    Article  Google Scholar 

  15. Nguang, S. K., Assawinchaichote, W.: \(H_{\infty }\) filtering for fuzzy dynamical systems with D stability constraints. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50(11), 1503-1508 (2003)

  16. Huang, S.-J., Zhang, D.-Q., Guo, L.-D., Wu, L.-B.: Convergent estimation mechanism design for nonlinear fuzzy systems with faults. IEEE Trans. Cybern. 50(5), 2176–2185 (2020)

    Article  Google Scholar 

  17. Wang, H., Ye, D., Yang, G.-H.: Actuator fault diagnosis for uncertain T-S fuzzy systems with local nonlinear models. Nonlinear Dyn. 76, 1977–1988 (2014)

    Article  MathSciNet  Google Scholar 

  18. Mu, Y., Zhang, H., Su, H., Ren, H.: Unknown input observer synthesis for discrete-time T-S fuzzy singular systems with application to actuator fault estimation. Nonlinear Dyn. 100, 3399–3412 (2020)

    Article  Google Scholar 

  19. **e, X., Wei, C., Gu, Z., Shi, K.: Relaxed resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems via a higher order time-variant balanced matrix method. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3145809

    Article  Google Scholar 

  20. Qi, W., Park, J. H., Zong, G., Cao, J., Cheng, J.: Filter for positive stochastic nonlinear switching systems with phase-type semi-Markov parameters and application. IEEE Trans. Syst. Man Cybern.: Syst. 52(4), 2225-2236 (2022)

  21. Pan, Y., Li, Q., Liang, H., Lam, H.-K.: A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Trans. Fuzzy Syst. (2021). https://doi.org/10.1109/TFUZZ.2021.3130201

    Article  Google Scholar 

  22. Liu, X., Gao, Z., Zhang, A.: Observer-based fault estimation and tolerant control for stochastic Takagi-Sugeno fuzzy systems with Brownian parameter perturbations. Automatica 102, 137–149 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zhang, H.-G., Sun, S.-X., Liu, C., Zhang, K.: A novel approach to observer-based fault estimation and fault-tolerant controller design for T-S fuzzy systems with multiple time delays. IEEE Trans. Fuzzy Syst. 28(8), 1679–1693 (2020)

    Article  Google Scholar 

  24. Rodrigues, M., Hamdi, H., Theilliol, D., Mechmeche, C., BenHadj Braiek, N.: Actuator fault estimation based adaptive polytopic observer for a class of LPV descriptor systems. Int. J. Robust Nonlinear Control 25, 673–688 (2015)

    Article  MathSciNet  Google Scholar 

  25. Chen, L., Edwards, C., Alwi, H.: Sensor fault estimation using LPV sliding mode observers with erroneous scheduling parameters. Automatica 101, 66–77 (2019)

    Article  MathSciNet  Google Scholar 

  26. Zhang, L.-L., Yang, G.-H.: Fault-estimation-based output-feedback adaptive FTC for uncertain nonlinear systems with actuator faults. IEEE Trans. Ind. Electron. 67(4), 3065–3075 (2020)

    Article  Google Scholar 

  27. Qi, W., Zong, G., Su, S.-F.: Fault detection for semi-Markov switching systems in the presence of positivity constraints. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3096948

    Article  Google Scholar 

  28. Pan, Y., Wu, Y., Lam, H.-K.: Security-based fuzzy control for nonlinear networked control systems with DoS attacks via a resilient event-triggered scheme. IEEE Trans. Fuzzy Syst. (2022). https://doi.org/10.1109/TFUZZ.2022.3148875

    Article  Google Scholar 

  29. Li, X., Ahn, C. K., Lu, D., Guo, S.: Robust simultaneous fault estimation and nonfragile output feedback fault-tolerant control for Markovian jump systems. IEEE Trans. Syst., Man, Cybern. 49(9), 1769-1776 (2019)

  30. Chen, L., Shi, P., Liu, M.: Fault reconstruction for Markovian jump systems with iterative adaptive observer. Automatica 105, 254–263 (2019)

    Article  MathSciNet  Google Scholar 

  31. Liu, M., Cao, X.B., Shi, P.: Fuzzy-model-based fault-tolerant design for nonlinear stochastic systems against simultaneous sensor and actuator faults. IEEE Trans. Fuzzy Syst. 21(5), 789–799 (2013)

    Article  Google Scholar 

  32. Yang, H., Jiang, Y., Yin, S.: Fault-tolerant control of time-delay Markov jump systems with It\(\hat{o}\) stochastic process and output disturbance based on sliding mode observer. IEEE Trans. Ind. Inform. 14(12), 5299–5307 (2018)

    Article  Google Scholar 

  33. Zhang, K., Jiang, B., Shi, P.: Distributed fault estimation observer design with adjustable parameters for a class of nonlinear interconnected systems. IEEE Trans. Cybern. 49(12), 4219–4228 (2019)

    Article  Google Scholar 

  34. Xu, Y., Yang, H., Jiang, B., Polycarpou, M.M.: Distributed optimal fault estimation and fault-tolerant control for interconnected systems: a stackelberg differential graphical game approach. IEEE Trans. Autom. Control (2021). https://doi.org/10.1109/TAC.2021.3074284

    Article  MATH  Google Scholar 

  35. Liu, Y., Wang, Z., Zhou, D.: Resilient actuator fault estimation for discrete-time complex networks: a distributed approach. IEEE Trans. Autom. Control (2020). https://doi.org/10.1109/TAC.2020.3033710

    Article  MATH  Google Scholar 

  36. Liu, X., Gao, X., Han, J.: Distributed fault estimation for a class of nonlinear multiagent systems. IEEE Trans. Syst., Man, Cybern. 50(9), 3382-3390 (2020)

  37. Huang, S.-J., Zhang, D.-Q., Guo, L.-D., Wu, L.-B.: Lower triangle factor based fault estimation and fault tolerant control for fuzzy systems. IEEE Trans. Fuzzy Syst. 28(10), 2533–2542 (2020)

    Article  Google Scholar 

  38. Huang, S.-J., Yang, G.-H.: Fault estimation for fuzzy delay systems: a minimum norm least squares solution approach. IEEE Trans. Cybern. 47(9), 2389–2399 (2017)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (under Grant No. 61773013), and the Scientific Research Fund of Liaoning Provincial Education Department, China (Under Grant No. 2020LNJC12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Juan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SJ., Guo, LD. & Wu, LB. Fault estimation for nonlinear systems: an observer structure design criterion technique. Nonlinear Dyn 110, 1651–1661 (2022). https://doi.org/10.1007/s11071-022-07701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07701-2

Keywords

Navigation