Log in

Parameter identification of nonlinear structural systems through frequency response sensitivity analysis

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinearity is ubiquitously encountered in structural systems, and it may have a great and complicated influence on the dynamic behaviours, including bifurcation, internal resonance, load history dependence, etc. Identifying the nonlinear system parameters is essential for analysis and design of the structure. To this end, a new approach is developed in this paper for nonlinear system parameter identification from frequency response sensitivity analysis. At first, the harmonic balance equation is established to govern the frequency response of the nonlinear system, upon which the frequency response and sensitivity analysis can be conducted. A remarkable feature is that the harmonic balance equation is algebraic so that the sensitivity analysis, pertaining to a linearized equation, is rather simple and straightforward. Then, parameter identification is modelled as a nonlinear least-squares problem, and the sensitivity approach is adopted in conjunction with the trust-region constraint for convergent solution. Numerical examples are conducted to demonstrate the feasibility and performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aykan, M., Özgüven, H.N.: Parametric identification of nonlinearity in structural systems using describing function inversion. Mech. Syst. Signal Process. 40(1), 356–376 (2013)

    Article  Google Scholar 

  2. Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  Google Scholar 

  3. Liu, G., Wang, L., Liu, J.K., Chen, Y.M., Lu, Z.R.: Identification of an airfoil-store system with cubic nonlinear via enhanced response sensitivity approach. AIAA J. 56(12), 4977–4987 (2018)

    Article  Google Scholar 

  4. Peng, Z.K., Lang, Z.Q., Billings, S.A.: Crack detection using nonlinear output frequency response functions. J. Sound Vib. 301(3–5), 777–788 (2007)

    Article  Google Scholar 

  5. Lee, J., Fenves, G.L.: Plastic-damage model for cyclic loading of concrete structures. ASCE J. Eng. Mech. 124(8), 892–900 (1998)

    Article  Google Scholar 

  6. Li, Y., Hao, Z.: A four-parameter Iwan model and its application. Mech. Syst. Signal Process. 68–69, 354–365 (2016)

    Article  Google Scholar 

  7. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  8. Yang, X., Turan, A., Lei, S.: Bifurcation and nonlinear analysis of a time-delayed thermoacoustic system. Commun. Nonlinear Sci. Numer. Simul. 44, 229–244 (2017)

    Article  MathSciNet  Google Scholar 

  9. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. J. Appl. Mech. 51(4), 947 (1984)

    Article  Google Scholar 

  10. Cunha, J., Cogan, S., Berthod, C.: Application of genetic algorithms for the identification of elastic constants of composite materials from dynamic tests. Int. J. Numer. Methods Eng. 45(7), 891–900 (1999)

    Article  Google Scholar 

  11. Liu, G.R., Chen, S.C.: Flaw detection in sandwich plates based on time-harmonic response using genetic algorithm. Comput. Methods Appl. Mech. Eng. 190(42), 5505–5514 (2001)

    Article  Google Scholar 

  12. Yuan, L.G., Yang, Q.G.: Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(1), 305–316 (2012)

    Article  MathSciNet  Google Scholar 

  13. Talatahari, S., Mohaggeg, H., Najafi, K., et al.: Solving parameter identification of nonlinear problems by artificial bee colony algorithm. Math. Probl. Eng. 2014, 1–6 (2014)

    Google Scholar 

  14. Hu, W., Yu, Y., Gu, W.: Parameter estimation of fractional-order arbitrary dimensional hyperchaotic systems via a hybrid adaptive artificial bee colony algorithm with simulated annealing algorithm. Eng. Appl. Artif. Intell. 68, 172–191 (2018)

    Article  Google Scholar 

  15. Wang, C., Tang, T.: Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769–780 (2014)

    Article  MathSciNet  Google Scholar 

  16. Mottershead, J.E., Link, M., Friswell, M.I.: The sensitivity method in finite element model updating: a tutorial. Mech. Syst. Signal Process. 25, 2275–2296 (2011)

    Article  Google Scholar 

  17. Lu, Z.R., Wang, L.: An enhanced response sensitivity approach for structural damage identification: convergence and performance. Int. J. Numer. Methods Eng. 111(13), 1231–1251 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wang, L., Liu, J., Lu, Z.R.: Incremental response sensitivity approach for parameter identification of chaotic and hyperchaotic systems. Nonlinear Dyn. 89(1), 153–167 (2017)

    Article  Google Scholar 

  19. Lu, Z.R., Yao, R., Wang, L., et al.: Identification of nonlinear hysteretic parameters by enhanced response sensitivity approach. Int. J. NonLinear Mech. 96, 1–11 (2017)

    Article  Google Scholar 

  20. Lu, Z.R., Liu, G., Liu, J., et al.: Parameter identification of nonlinear fractional-order systems by enhanced response sensitivity approach. Nonlinear Dyn. 95(2), 1495–1512 (2019)

    Article  Google Scholar 

  21. Huynh, D., He, J., Tran, D.: Damage location vector: a non-destructive structural damage detection technique. Comput. Struct. 83(28–30), 2353–2367 (2005)

    Article  Google Scholar 

  22. Živanović, S., Pavic, A., Reynolds, P.: Modal testing and FE model tuning of a lively footbridge structure. Eng. Struct. 28(6), 857–868 (2006)

    Article  Google Scholar 

  23. Peng, Z.K., Lang, Z.Q., Billings, S.A.: Linear parameter estimation for multi-degree-of-freedom nonlinear systems using nonlinear output frequency-response functions. Mech. Syst. Signal Process. 21(8), 3108–3122 (2007)

    Article  Google Scholar 

  24. Peng, Z.K., Lang, Z.Q., Billings, S.A.: Nonlinear parameter estimation for multi-degree-of-freedom nonlinear systems using nonlinear output frequency-response functions. Mech. Syst. Signal Process. 22(7), 1582–1594 (2008)

    Article  Google Scholar 

  25. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer, New York (2019)

    Book  Google Scholar 

  26. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)

    Article  MathSciNet  Google Scholar 

  27. Lu, Z.R., Zhou, J., Wang, L.: On choice and effect of weight matrix for response sensitivity-based damage identification with measurement and model errors. Mech. Syst. Signal Process. 114, 1–24 (2019)

    Article  Google Scholar 

  28. Moré, J.J.: The Levenberg–Marquardt Algorithm: Implementation and Theory. Numerical Analysis, pp. 105–116. Springer, Berlin (1978)

    MATH  Google Scholar 

  29. Tikhonov, A.N.: On the solution of ill-posed problems and the method of regularization. Sov. Math. 4, 1035–1038 (1963)

    MATH  Google Scholar 

  30. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)

    Article  MathSciNet  Google Scholar 

  31. Hansen, P.C.: Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6(1), 1–35 (1994)

    Article  MathSciNet  Google Scholar 

  32. Guo, J., Wang, L., Takewaki, I.: Frequency response-based damage identification in frames by minimum constitutive relation error and sparse regularization. J. Sound Vib. 443, 270–292 (2019)

    Article  Google Scholar 

  33. Kerschen, G., Lenaerts, V., Golinval, J.C.: Identification of a continuous structure with a geometrical non-linearity. Part I: conditioned reverse path method. J. Sound Vib. 262(4), 889–906 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The present investigation was performed under the support of National Natural Science Foundation of China (Nos. 11702336 and 11972380), Guangdong Province Natural Science Foundation (No. 2018B030311001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Chen, Y., Lu, ZR. et al. Parameter identification of nonlinear structural systems through frequency response sensitivity analysis. Nonlinear Dyn 104, 3975–3990 (2021). https://doi.org/10.1007/s11071-021-06481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06481-5

Keywords

Navigation