Log in

A novel nonsmooth approach for flexible multibody systems with contact and friction in 3D space

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For computational multibody system dynamics, contact and friction problems are very complex and important problems. Therefore, this paper proposes a novel nonsmooth method for flexible multibody systems with contact and friction in 3D space. Considering the nonsmooth effect of contact and friction on the state variable of the multibody systems, the proposed method is divided into two parts: (i) the change of state variables under the action of smooth force and (ii) the change of state variables caused by contact and friction. Furthermore, for the contact part, the Newton’s impact law and the classical Coulomb friction model are employed to deal with normal impact contact impulse and tangential friction contact impulse, respectively. In addition, Fischer–Burmeister function and Karush–Kuhn–Tucker conditions are also used to solve the normal impact contact impulse and tangential friction contact impulse. What’s more, since the symplectic discrete format performs well robustness to numerical results, the discrete format of the proposed method is based on the symplectic discreteness, and it is expected to obtain the robust numerical results. Finally, several numerical examples are tested by the proposed nonsmooth method, and the numerical simulation results verify the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Pfeiffer, F., Glocker, C.: Contacts in multibody systems. PMM-J. Appl. Math. Mech. 64, 773–782 (2000)

    MATH  Google Scholar 

  2. Yang, S., Li, S., Lu, Y.: Dynamics of vehicle-pavement coupled system based on a revised flexible roller contact tire model. Sci. China Ser. E-Technol. Sci. 52, 721–730 (2009)

    MATH  Google Scholar 

  3. Hurmuzlu, Y., GéNot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40, 1647–1664 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Tian, Q., Flores, P., Lankarani, H.-M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Google Scholar 

  5. Liu, C., Tian, Q., Hu, H.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Google Scholar 

  6. Skrinjar, L., Slavič, J., Boltežar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018)

    Google Scholar 

  7. Flores, P., Machado, M., Silva, M.-T., Martins, J.-M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    MATH  Google Scholar 

  8. Moreau, J.-J.: Standard inelastic shocks and the dynamics of unilateral constraints. In: Del Piero, G., Maceri, F. (eds.) Unilateral Problems in Structural Analysis, pp. 173–221. Springer, Vienna (1985)

    Google Scholar 

  9. Charles, A., Casenave, F., Glocker, C.: A catching-up algorithm for multibody dynamics with impacts and dry friction. Comput. Methods Appl. Mech. Eng. 334, 208–237 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Haddouni, M., Acary, V., Garreau, S., Beley, J.-D., Brogliato, B.: Comparison of several formulations and integration methods for the resolution of DAEs formulations in event-driven simulation of nonsmooth frictionless multibody dynamics. Multibody Syst. Dyn. 41, 201–231 (2017)

    MathSciNet  Google Scholar 

  11. Wang, Q., Peng, H., Zhuang, F.: A constraint-stabilized method for multibody dynamics with friction-affected translational joints based on HLCP. Discrete Contin. Dyn. Syst. Ser. B 16, 589–605 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Q.-Z., Acary, V., Virlez, G., Brüls, O.: A nonsmooth generalized-αscheme for flexible multibody systems with unilateral constraints. Int. J. Numer. Methods Eng. 96, 487–511 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Anitescu, M., Potra, F.-A., Stewart, D.-E.: Time-step** for three-dimensional rigid body dynamics. Comput. Methods Appl. Mech. Eng. 177, 183–197 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Gao, H.-P., Wang, Q., Wang, S.-M., Fu, L.: A linear complementarity model for multibody systems with frictional unilateral and bilateral constraints. Acta Mech. Sin. 27, 587–592 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Zhuang, F.-F., Wang, Q.: Modeling and analysis of rigid multibody systems with driving constraints and frictional translation joints. Acta Mech. Sin. 30, 437–446 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Kan, Z., Li, F., Peng, H., Chen, B.: Sliding cable modeling: a nonlinear complementarity function based framework. Mech. Syst. Signal Proc. 146, 107021 (2021)

    Google Scholar 

  17. Moreau, J.-J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications, pp. 1–82. Springer, Vienna (1988)

    Google Scholar 

  18. Anitescu, M., Hart, G.-D.: A constraint-stabilized time-step** approach for rigid multibody dynamics with joints, contact and friction. Int. J. Numer. 60, 2335–2371 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Tasora, A., Anitescu, M.: A convex complementarity approach for simulating large granular flows. J. Comput. Nonlinear Dyn. 5, 031004 (2010)

    Google Scholar 

  20. Melanz, D., Fang, L., Jayakumar, P., Negrut, D.: A comparison of numerical methods for solving multibody dynamics problems with frictional contact modeled via differential variational inequalities. Methods Appl. Mech. Eng. 320, 668–693 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Tasora, A., Anitescu, M.: A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput. Methods Appl. Mech. Eng. 200, 439–453 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Kleinert, J., Simeon, B., Dreßler, K.: Nonsmooth contact dynamics for the large-scale simulation of granular material. J. Comput. Appl. Math. 316, 345–357 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Stewart, D.-E., Trinkle, J.-C.: An implicit time-step** scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Brüls, O., Acary, V., Cardona, A.: Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-α scheme. Comput. Methods Appl. Mech. Eng. 281, 131–161 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Schindler, T., Rezaei, S., Kursawe, J., Acary, V.: Half-explicit timestep** schemes on velocity level based on time-discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 290, 250–276 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Hedrih, K.: Vibro-impact dynamics of two rolling balls along curvilinear trace. In: Procedia Engineering, X International Conference on Structural Dynamics, vol. 199, pp. 663–668 (2017)

  27. Hedrih, K.: Non-linear phenomena in vibro-impact dynamics: central collision and energy jumps between two rolling bodies. Nonlinear Dyn. 91, 1885–1907 (2018)

    Google Scholar 

  28. Hedrih, K.: Central collision of two rolling balls: theory and examples. Adv. Theor. Appl. Mech. 10, 33–79 (2017)

    Google Scholar 

  29. Hedrih, K.: Dynamics of impacts and collisions of the rolling balls, dynamical systems: theoretical and experimental analysis. Math. Stat. 182, 157–168 (2017)

    Google Scholar 

  30. Acary, V.: Projected event-capturing time-step** schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput. Methods Appl. Mech. Eng. 256, 224–250 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Fu, L., Wang, Q., Wang, S.: Time-step** for multibody dynamics with friction-affected bilateral constraints. Prog. Nat. Sci. 19, 1799–1804 (2009)

    Google Scholar 

  32. Jean, M., Moreau, J.-J.: Dynamics in the presence of unilateral contacts and dry friction: a numerical approach. In: Del Piero, G., Maceri, F. (eds.) Unilateral Problems in Structural Analysis—2, pp. 151–196. Springer, Vienna (1987)

    Google Scholar 

  33. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 235–257 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Paoli, L., Schatzman, M.: A numerical scheme for impact problems I: the one-dimensional case. SIAM J. Numer. Anal. 40, 702–733 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Paoli, L., Schatzman, M.: A numerical scheme for impact problems II: the multidimensional case. SIAM J. Numer. Anal. 40, 734–768 (2002)

    MathSciNet  MATH  Google Scholar 

  36. Peng, H., Jiang, X.: Nonlinear receding horizon guidance for spacecraft formation reconfiguration on libration point orbits using a symplectic numerical method. ISA Trans. 60, 38–52 (2016)

    Google Scholar 

  37. Peng, H., Gao, Q., Wu, Z., Zhong, W.: Symplectic adaptive algorithm for solving nonlinear two-point boundary value problems in astrodynamics. Celest. Mech. Dyn. Astron. 110, 319 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Peng, H., Wang, X., Li, M., Chen, B.: An hp symplectic pseudospectral method for nonlinear optimal control. Commun. Nonlinear Sci. Numer. Simul. 42, 623–644 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Peng, H., Li, F., Liu, J., Lu, Z.: A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models. IEEE Trans. Ind. Electron. 67, 3819–3829 (2020)

    Google Scholar 

  40. Song, N., Peng, H., Xu, X., Wang, G.: Modeling and simulation of a planar rigid multibody system with multiple revolute clearance joints based on variational inequality. Mech. Mach. Theory. 154, 104053 (2020)

    Google Scholar 

  41. Yang, H., Sun, S., Yang, C.: Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media. J. Comput. Phys. 332, 1–20 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Kanno, Y., Ohsaki, M.: A non-interior implicit smoothing approach to complementarity problems for frictionless contacts. Comput. Methods Appl. Mech. Eng. 200, 1176–1185 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Ferris, M.-C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    MathSciNet  MATH  Google Scholar 

  44. Stewart, D.-E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)

    MathSciNet  MATH  Google Scholar 

  45. Kanzow, C.: Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17, 851–868 (1996)

    MathSciNet  MATH  Google Scholar 

  46. Wang, Q., Tian, Q., Hu, H.: Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83, 1919–1937 (2016)

    Google Scholar 

  47. Wang, Q., Tian, Q., Hu, H.: Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1411–1425 (2014)

    MathSciNet  Google Scholar 

  48. Gao, Q., Tan, S.-J., Zhang, H., Zhong, W.: Symplectic algorithms based on the principle of least action and generating functions. Int. J. Numer. Methods Eng. 89, 438–508 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Peng, H., Song, N., Kan, Z.: A nonsmooth contact dynamic algorithm based on the symplectic method for multibody system analysis with unilateral constraints. Multibody Syst. Dyn. 49, 119–153 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Peng, H., Song, N., Kan, Z.: A novel nonsmooth dynamics method for multibody systems with friction and impact based on the symplectic discrete format. Int. J. Numer. Methods Eng. 121, 1530–1557 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (11922203, 11772074, 11761131005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Symplectic discrete equations of the multibody system with contact free

Appendix: Symplectic discrete equations of the multibody system with contact free

According to Eqs. (54) and (55), when the state variables are smooth and continuous, the governing equations are:

$$ {\mathbf{M}}\left( {\mathbf{q}} \right){\mathbf{\dot{\tilde{v}}}} + {{\varvec{\Phi}}}\left( {\mathbf{q}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} = {\mathbf{F}}\left( {{\mathbf{q}},{\mathbf{v}},t} \right) $$
(A-1)
$$ {{\varvec{\Phi}}}\left( {\mathbf{q}} \right) = {\mathbf{0}}. $$
(A-2)

In accordance with D’Alembert’s principle, the variational formulation \(\delta {\text{S}}\) of the action S in time interval \(\left[ {t_{n} ,t_{n + 1} } \right]\) can be demonstrated as:

$$ \delta {\text{S}}{ = }\delta \int_{{t_{n} }}^{{t_{n + 1} }} {\left( {\frac{1}{2}{\mathbf{v}}^{{\mathbf{T}}} {\mathbf{M}}\left( {\mathbf{q}} \right){\mathbf{v}} - {{\varvec{\Phi}}}\left( {\mathbf{q}} \right)^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - {\mathbf{U}}\left( {\mathbf{q}} \right)} \right){\text{d}}t} - \int_{{t_{n} }}^{{t_{n + 1} }} {\delta {\mathbf{q}}^{{\mathbf{T}}} {\mathbf{Q}}\left( {{\mathbf{q}},{\mathbf{v}},t} \right){\text{d}}t}. $$
(A-3)

By the variation of q and v using Eq. (A-3), we have:

$$ \delta {\text{S}} = \delta {\mathbf{q}}^{{\mathbf{T}}} {\mathbf{p}}|_{{t_{n} }}^{{t_{n + 1} }} - \int_{{t_{n} }}^{{t_{n + 1} }} {\delta {\mathbf{q}}\left( {{\mathbf{M}}\left( {\mathbf{q}} \right){\mathbf{\dot{\tilde{v}}}} - \frac{1}{2}{\mathbf{v}}^{{\mathbf{T}}} \frac{{\partial {\mathbf{M}}\left( {\mathbf{q}} \right)}}{{\partial {\mathbf{q}}}}{\mathbf{v}} + {{\varvec{\Phi}}}\left( {\mathbf{q}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} + \frac{{\partial {\text{U}}\left( {\mathbf{q}} \right)}}{{\partial {\mathbf{q}}}} + {\mathbf{Q}}\left( {{\mathbf{q}},{\mathbf{v}},t} \right)} \right){\text{d}}t} $$
(A-4)

where in the integral term of Eq. (A-4), the terms of \(\frac{1}{2}{\mathbf{v}}^{{\mathbf{T}}} \frac{{\partial {\mathbf{M}}\left( {\mathbf{q}} \right)}}{{\partial {\mathbf{q}}}}{\mathbf{v}}\), \(\frac{{\partial {\text{U}}\left( {\mathbf{q}} \right)}}{{\partial {\mathbf{q}}}}\) and \({\mathbf{Q}}\left( {{\mathbf{q}},{\mathbf{v}},t} \right)\) represent the inertia force and external force, which are included in \({\mathbf{F}}\left( {{\mathbf{q}},{\mathbf{v}},t} \right)\), so Eq. (A-4) can be expressed as:

$$ \delta {\text{S}} = \delta {\mathbf{q}}^{{\mathbf{T}}} {\mathbf{p}}|_{{t_{n} }}^{{t_{n + 1} }} - \int_{{t_{n} }}^{{t_{n + 1} }} {\delta {\mathbf{q}}\left( {{\mathbf{M}}\left( {\mathbf{q}} \right){\mathbf{\dot{\tilde{v}}}} + {{\varvec{\Phi}}}\left( {\mathbf{q}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - {\mathbf{F}}\left( {{\mathbf{q}},{\mathbf{v}},t} \right)} \right){\text{d}}t}. $$
(A-5)

Due to Eq. (A-1) and Eq. (A-5), we have:

$$ \delta {\text{S } = \text{ }}\delta {\tilde{\mathbf{q}}}_{n + 1}^{{\mathbf{T}}} {\mathbf{p}}_{n + 1} - \delta {\mathbf{q}}_{n}^{{\mathbf{T}}} {\mathbf{p}}_{n}. $$
(A-6)

In this paper, we use center interpolation to approximate the state variables within the integration interval; then, Eq. (A-3) can be replaced as:

$$ \delta {\text{S}} \approx \delta \int_{{t_{n} }}^{{t_{n + 1} }} {\left( {\frac{1}{2}{\hat{\mathbf{v}}}^{{\text{T}}} {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right){\hat{\mathbf{v}}} - {{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - {\mathbf{U}}\left( {{\hat{\mathbf{q}}}} \right)} \right){\text{d}}t} - \int_{{t_{n} }}^{{t_{n + 1} }} {\delta {\hat{\mathbf{q}}}^{{\text{T}}} {\mathbf{Q}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right){\text{d}}t} $$
(A-7)

where in Eq. (A-7), \({\hat{\mathbf{v}}} = \left( {{\tilde{\mathbf{q}}}_{n + 1} - {\mathbf{q}}_{n} } \right)/h\), \({\hat{\mathbf{q}}} = \left( {{\tilde{\mathbf{q}}}_{n + 1} + {\mathbf{q}}_{n} } \right)/2\), \(h = t_{n + 1} - t_{n}\).

Then, according to Eq. (A-6), we have:

$$ - {\mathbf{p}}_{n} = \int_{{t_{n} }}^{{t_{n + 1} }} {\frac{{\partial {\text{S}}}}{{\partial {\mathbf{q}}_{n} }}} {\text{d}}t = - {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right){\hat{\mathbf{v}}} + \frac{1}{4}h{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}}{\hat{\mathbf{v}}} - \frac{1}{2}h{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - \frac{1}{2}h\frac{{\partial {\text{U}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}} + \frac{1}{2}h{\mathbf{Q}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right) $$
(A-8)
$$ {\mathbf{p}}_{n + 1} = \int_{{t_{n} }}^{{t_{n + 1} }} {\frac{{\partial {\text{S}}}}{{\partial {\mathbf{q}}_{n} }}} {\text{d}}t = {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right){\hat{\mathbf{v}}} + \frac{1}{4}h{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}}{\hat{\mathbf{v}}} + \frac{1}{2}h{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - \frac{1}{2}h\frac{{\partial {\text{U}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}} + \frac{1}{2}h{\mathbf{Q}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right) $$
(A-9)

where in Eqs. (A-8) and (A-9), the terms \(\frac{1}{4}{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}}{\hat{\mathbf{v}}}\), \(\frac{1}{2}\frac{{\partial {\text{U}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}}\) and \(\frac{1}{2}{\mathbf{Q}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)\) are included in \({\mathbf{F}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)\), so Eqs. (62) and (63) can be obtained using Eqs. (A-8) and (A-9):

$$ {\mathbf{p}}_{n} - {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right){\hat{\mathbf{v}}} - \frac{1}{2}h{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} + \frac{1}{2}h{\mathbf{F}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right) = {\mathbf{0}} $$
(A-10)
$$ {\mathbf{p}}_{n + 1} - {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right){\hat{\mathbf{v}}} + \frac{1}{2}h{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} - \frac{1}{2}h{\mathbf{F}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right) = {\mathbf{0}}. $$
(A-11)

Proposition 8

Define the state variables at \(t_{n}\) and \(t_{n + 1}\) as \(\pi_{n} = \left[ {{\mathbf{q}}_{n} ,{\mathbf{p}}_{n} } \right]\) and \(\pi_{n + 1} = \left[ {{\tilde{\mathbf{q}}}_{n + 1} ,{\mathbf{p}}_{n + 1} } \right]\) , respectively; then, the above transfer process from \(\pi_{n}\) to \(\pi_{n + 1}\) satisfies the symplectic transfer.

Proof

According to [48,49,50], if \({\mathbf{S}}_{{\mathbf{s}}}\) is the transfer matrix from \(\pi_{n} = \left[ {{\mathbf{q}}_{n} ,{\mathbf{p}}_{n} } \right]\) to \(\pi_{n + 1} = \left[ {{\tilde{\mathbf{q}}}_{n + 1} ,{\mathbf{p}}_{n + 1} } \right]\), and \({\mathbf{S}}_{{\mathbf{s}}}\) satisfies the following relationship, then the transfer process is symplectic:

$$ {\mathbf{S}}_{{\mathbf{s}}}^{{\mathbf{T}}} J{\mathbf{S}}_{{\mathbf{s}}}^{{\mathbf{T}}} = J $$
(A-12)

where

$$ J = \left[ {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{I}} \\ { - {\mathbf{I}}} & {\mathbf{0}} \\ \end{array} } \right] $$
(A-13)

Define \(f_{1}\) is equal to Eq. (A-10), \(f_{2}\) is equal to Eq. (A-11) and \(f = \left[ {f_{1} ,f_{2} } \right]^{{\mathbf{T}}}\). As \({\mathbf{S}}_{{\mathbf{s}}}\) is the transfer matrix of \(\pi_{n}\) and \(\pi_{n + 1}\), the \({\mathbf{S}}_{{\mathbf{s}}}\) has the following formula:

$$ {\mathbf{S}}_{{\mathbf{s}}} = \frac{{\partial \pi_{n + 1} }}{{\partial \pi_{n} }} = \left( {\frac{\partial f}{{\partial \pi_{n + 1} }}} \right)^{ - 1} \frac{\partial f}{{\partial \pi_{n} }}. $$
(A-14)

Then, according to Eqs. (A-10), (A-11) and (A-14), we have:

$$ \left\{ {\begin{array}{*{20}l} {\frac{{\partial f_{1} }}{{\partial {\mathbf{q}}_{n} }} = \frac{1}{h}{\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right) - \frac{{\partial {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}}{\hat{\mathbf{v}}} + \frac{1}{8}h{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial^{2} {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}^{2} }}{\hat{\mathbf{v}}} - \frac{1}{4}h\left( {{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} } \right)_{{{\hat{\mathbf{q}}}}} + \frac{1}{4}h\frac{{\partial {\mathbf{F}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)}}{{\partial {\hat{\mathbf{q}}}}}} \hfill \\ {\frac{{\partial f_{1} }}{{\partial {\tilde{\mathbf{q}}}_{n + 1} }} = - \frac{1}{h}{\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right) + \frac{1}{8}h{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial^{2} {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}^{2} }}{\hat{\mathbf{v}}} - \frac{1}{4}h\left( {{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} } \right)_{{{\hat{\mathbf{q}}}}} + \frac{1}{4}h\frac{{\partial {\mathbf{F}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)}}{{\partial {\hat{\mathbf{q}}}}}} \hfill \\ {\frac{{\partial f_{1} }}{{\partial {\mathbf{p}}_{n} }} = {\mathbf{I}}} \hfill \\ {\frac{{\partial f_{1} }}{{\partial {\mathbf{p}}_{n + 1} }} = {\mathbf{0}}} \hfill \\ {\frac{{\partial f_{2} }}{{\partial {\mathbf{q}}_{n} }} = \frac{1}{h}{\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right) - \frac{1}{8}h{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial^{2} {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}^{2} }}{\hat{\mathbf{v}}} + \frac{1}{4}h\left( {{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} } \right)_{{{\hat{\mathbf{q}}}}} - \frac{1}{4}h\frac{{\partial {\mathbf{F}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)}}{{\partial {\hat{\mathbf{q}}}}}} \hfill \\ {\frac{{\partial f_{2} }}{{\partial {\tilde{\mathbf{q}}}_{n + 1} }} = - \frac{1}{h}{\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right) - \frac{{\partial {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}}}{\hat{\mathbf{v}}} - \frac{1}{8}h{\hat{\mathbf{v}}}^{{\mathbf{T}}} \frac{{\partial^{2} {\mathbf{M}}\left( {{\hat{\mathbf{q}}}} \right)}}{{\partial {\hat{\mathbf{q}}}^{2} }}{\hat{\mathbf{v}}} + \frac{1}{4}h\left( {{{\varvec{\Phi}}}\left( {{\hat{\mathbf{q}}}} \right)_{{\mathbf{q}}}^{{\mathbf{T}}} {{\varvec{\uplambda}}}_{b} } \right)_{{{\hat{\mathbf{q}}}}} - \frac{1}{4}h\frac{{\partial {\mathbf{F}}\left( {{\hat{\mathbf{q}}},{\hat{\mathbf{v}}},t} \right)}}{{\partial {\hat{\mathbf{q}}}}}} \hfill \\ {\frac{{\partial f_{2} }}{{\partial {\mathbf{p}}_{n} }} = {\mathbf{0}}} \hfill \\ {\frac{{\partial f_{2} }}{{\partial {\mathbf{p}}_{n + 1} }} = {\mathbf{I}}} \hfill \\ \end{array} } \right. $$
(A-15)

According to Eqs. (A-14) and (A-15), one can have the transfer matrix \({\mathbf{S}}_{{\mathbf{s}}}\) and the transfer matrix \({\mathbf{S}}_{{\mathbf{s}}}\) satisfies Eq. (A-12); therefore, the transfer process from \(\pi_{n}\) to \(\pi_{n + 1}\) is symplectic.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Peng, H., Kan, Z. et al. A novel nonsmooth approach for flexible multibody systems with contact and friction in 3D space. Nonlinear Dyn 102, 1375–1408 (2020). https://doi.org/10.1007/s11071-020-05972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05972-1

Keywords

Navigation