Log in

Analysis of time series through complexity–entropy curves based on generalized fractional entropy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose the complexity–entropy causality plane based on the generalized fractional entropy. When applying the proposed method into artificial time series and empirical time series, we find that both results show that the stochastic and chaotic time series are clearly distinguished. On the one hand, we could distinguish them according to the trend of the normalized generalized fractional entropy H as the parameter \(\alpha \) increases. On the other hand, the stochastic and chaotic time series can be distinguished by the trend of their corresponding extreme values \(\alpha _C\) with the increase in embedding dimension m. However, compared with the q-complexity–entropy plane, the trend of their extreme value \(\alpha _C\) is irregular. Moreover, when applying the complexity–entropy causality plane into financial time series, we could obtain more accurate and clearer information on the classification of different regional financial markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bercher, J.F., Vignat, C.: On minimum Fisher information distributions with restricted support and fixed variance. Inf. Sci. 179, 3832–3842 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berger, A.L., Della-Pietra, V.J., Della-Pietra, S.A.: A maximum entropy approach to natural language processing. Comput. Linguist. 22, 39–71 (1996)

    Google Scholar 

  3. Della-Pietra, S.A., Della-Pietra, V.J., Lafferty, J.: Inducing features of random fields. IEEE Trans. Pattern Anal. Mach. Int. 19, 380–393 (1997)

    Article  Google Scholar 

  4. Frieden, B.R.: Physics from Fisher Information, vol. 33, pp. 327–343. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  5. Wang, Y.Y., Shang, P.J.: Analysis of financial stock markets through multidimensional scaling based on information measures. Nonlinear Dyn. 89, 1827–1844 (2017)

    Article  MathSciNet  Google Scholar 

  6. **ong, H., Shang, P.J.: Weighted multifractal cross-correlation analysis based on Shannon entropy. Commun. Nonlinear Sci. Numer. Simul. 30, 268–283 (2016)

    Article  MathSciNet  Google Scholar 

  7. Fouda, J.S.A.E., Koepf, W.: Detecting regular dynamics from time series using permutations slopes. Commun. Nonlinear Sci. Numer. Simul. 27, 216–227 (2015)

    Article  MathSciNet  Google Scholar 

  8. Lopes, A.M., Machado, J.A.T.: Analysis of temperature time-series: embedding dynamics into the MDS method. Commun. Nonlinear Sci. Numer. Simul. 19, 851–871 (2014)

    Article  Google Scholar 

  9. **a, J.N., Shang, P.J.: Multiscale entropy analysis of financial time series. Fluct. Noise Lett. 11, 1250033 (2012)

    Article  Google Scholar 

  10. Yin, Y., Shang, P.J.: Comparison of multiscale methods in the stock markets for detrended cross-correlation analysis and cross-sample entropy. Fluct. Noise Lett. 13, 1450023 (2014)

    Article  Google Scholar 

  11. Tian, Q., Shang, P.J., Feng, G.C.: Financial time series analysis based on information categorization method. Physica A 416, 183–191 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shannon, C.E.: A mathematical theory of communication. Bell. Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Peredachi Inf. 2, 157–168 (1965)

    MathSciNet  MATH  Google Scholar 

  15. Mandelbrot, B.B.: The Fractal Geometry of Nature, vol. 147, pp. 286–287. Freeman, San Francisco (1983)

    Google Scholar 

  16. Lyapunov, A.M.: The General Problem of the Stability of Motion, vol. 11. Taylor & Francis, London (1992)

    MATH  Google Scholar 

  17. Perc, M.: Nonlinear time series analysis of the human electrocardiogram. Eur. J. Phys. 26, 757–768 (2005)

    Article  Google Scholar 

  18. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)

    Article  Google Scholar 

  19. Aragoneses, A., Carpi, L., Tarasov, N., Churkin, D.V., Torrent, M.C., Masoller, C., Turitsyn, S.K.: Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser. Phys. Rev. Lett. 116, 033902 (2016)

    Article  Google Scholar 

  20. Lin, H., Khurram, A., Hong, Y.: Time-delay signatures in multi-transverse mode VCSELs subject to double-cavity polarization-rotated optical feedback. Opt. Commun. 377, 128–138 (2016)

    Article  Google Scholar 

  21. Weck, P.J., Schaffner, D.A., Brown, M.R., Wicks, R.T.: Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind. Phys. Rev. E 91, 023101 (2015)

    Article  Google Scholar 

  22. Li, Q., Zuntao, F.: Permutation entropy and statistical complexity quantifier of non-stationarity effect in the vertical velocity records. Phys. Rev. E 89, 012905 (2014)

    Article  Google Scholar 

  23. Bian, C., Qin, C., Ma, Q.D.Y., Shen, Q.: Modified permutation-entropy analysis of heartbeat dynamics. Phys. Rev. E 85, 021906 (2015)

    Article  Google Scholar 

  24. Yang, Y.G., Pan, Q.X., Sun, S.J., Xu, P.: Novel image encryption based on quantum walks. Sci. Rep. 5, 7784 (2015)

    Article  Google Scholar 

  25. Aragoneses, A., Rubido, N., Tiana-Alsina, J., Torrent, M.C., Masoller, C.: Distinguishing signatures of determinism and stochasticity in spiking complex systems. Sci. Rep. 3, 1778 (2013)

    Article  Google Scholar 

  26. Rosso, O.A., Larrondo, H.A., Martin, M.T., Plastino, A., Fuentes, M.A.: Distinguishing noise from chaos. Phys. Rev. Lett. 99, 154102 (2017)

    Article  Google Scholar 

  27. Jovanovic, T., García, S., Gall, H., Mejía, A.: Complexity as a streamflow metric of hydrologic alteration. Environ. Res. Risk. Assess. 31, 2107–2119 (2017)

    Article  Google Scholar 

  28. Stosic, T., Telesca, L., Ferreira, D.V., Stosic, B.: Investigating anthropically induced effects in streamflow dynamics by using permutation entropy and statistical complexity analysis: a case study. J. Hydrol. 540, 1136–1145 (2016)

    Article  Google Scholar 

  29. Ribeiro, H.V., Zunino, L., Mendes, R.S., Lenzi, E.K.: Complexity–entropy causality plane: a useful approach for distinguishing songs. Physica A 391, 2421–2428 (2012)

    Article  Google Scholar 

  30. Ribeiro, H.V., Jauregui, M., Zunino, L., Lenzi, E.K.: Characterizing time series via complexity–entropy curves. Phys. Rev. E 95, 062106 (2017)

    Article  MathSciNet  Google Scholar 

  31. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  32. Hilfer, R.: Application of Fractional Calculus in Physics, vol. 21, pp. 1021–1032. World Scientific, Singapore (2000)

    Book  Google Scholar 

  33. Zaslavsky, G.: Hamiltonian Chaos and Fractional Dynamics, vol. 23, p. 5380. Oxford University Press, Oxford (2008)

    Google Scholar 

  34. Tarasov, V.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2010)

    Book  MATH  Google Scholar 

  35. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, vol. 368. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  36. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  37. Ionescu, C.: The Human Respiratory System: An Analysis of the Interplay Between Anatomy, Structure, Breathing and Fractal Dynamics. Series in BioEngineering. Springer, London (2013)

    Book  MATH  Google Scholar 

  38. Machado, J.A.T.: Entropy analysis of integer and fractional dynamical systems. J. Appl. Nonlinear Dyn. 62, 371–378 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Machado, J.A.T.: Fractional dynamics of a system with particles subjected to impacts. Commun. Nonlinear Sci. Numer. Simul. 16, 4596–4601 (2011)

    Article  MATH  Google Scholar 

  40. Machado, J.A.T.: Entropy analysis of fractional derivatives and their approximation. J. Appl. Nonlinear Dyn. 1, 109–112 (2012)

    Article  Google Scholar 

  41. Machado, J.A.T.: Fractional order generalized information. Entropy 16, 2350–2361 (2014)

    Article  Google Scholar 

  42. Podobnik, B., Horvatic, D., Ng, A.L., Stanley, H.E., Ivanov, P.C.: Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Physica A 387, 3954–3959 (2008)

    Article  MathSciNet  Google Scholar 

  43. Dean, M.F., Muir, H., Benson, P.F., Button, L.R., Boylston, A., Mowbray, J.: Enzyme replacement therapy by fibroblast transplantation in a case of Hunter syndrome. Nature 261, 323–325 (1976)

    Article  Google Scholar 

  44. Gray, R.: Entropy and Information Theory. Springer, New York (1990)

    Book  MATH  Google Scholar 

  45. Beck, C.: Generalised information and entropy measures in physics. Contemp. Phys. 50, 495–510 (2009)

    Article  Google Scholar 

  46. Ubriaco, M.: Entropies based on fractional calculus. Phys. Lett. A 373, 2516–2519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Machado, J.A.T., Galhano, A.M.S.: Approximating fractional derivatives in the perspective of system control. Nonlinear Dyn. 56, 401–407 (2009)

    Article  MATH  Google Scholar 

  48. Machado, J.A.T., Galhano, A.M.S., Oliveira, A.A., Tar, J.K.: Approximating fractional derivatives through the generalized mean. Commun. Nonlinear Sci. Numer. Simul. 14, 3723–3730 (2009)

    Article  MATH  Google Scholar 

  49. Valério, D., Trujillo, J.J., Rivero, M., Machado, J.A.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827–1846 (2013)

    Article  Google Scholar 

  50. López-Ruiz, R., Mancini, H.L., Calbet, X.: A statistical measure of complexity. Phys. Lett. A 209, 321–326 (1995)

    Article  Google Scholar 

  51. Taneja, I., Pardo, L., Morales, D., Ménandez, L.: Generalized information measures and their applications: a brief survey. Qüestiió 13, 47–73 (1989)

    MathSciNet  Google Scholar 

  52. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37, 145–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  53. Cha, S.H.: Measures between probability density functions. Int. J. Math. Models Methods Appl. Sci. 1, 300–307 (2007)

    Google Scholar 

  54. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  55. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Political Econ. 81, 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hübner, U., Abraham, N., Weiss, C.O.: Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Phys. Rev. A 40, 6354–6365 (1989)

    Article  Google Scholar 

  57. http://finance.yahoo.com

  58. Yang, X.J., Gao, F., Srivastava, H.M.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math. 339, 285–296 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang, X.J., Machado, J.A.T., Baleanu, D.: Exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25, 1740006 (2017)

    Article  MathSciNet  Google Scholar 

  60. Yang, X.J., Srivastava, H.M., Machado, J.A.T.: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm. Sci. 20, 753–756 (2016)

    Article  Google Scholar 

  61. Yang, X.J., Gao, F., Machado, J.A.T., Baleanu, D.: A new fractional derivative involving the normalized sinc function without singular kernel. Eur. Phys. J. Spec. Top. 226, 3567–3575 (2017)

    Article  Google Scholar 

  62. Yang, X.J.: New rheological problems involving general fractional derivatives with nonsingular power-law kernels. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 19, 45–52 (2018)

    MathSciNet  Google Scholar 

  63. Yang, X.J.: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Therm. Sci. 21, 1161–1171 (2017)

    Article  Google Scholar 

  64. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press, New York (2015)

    MATH  Google Scholar 

  65. Time series A of the Santa Fe time series competition. https://rdrr.io/cran/TSPred/man/SantaFe.A.html

Download references

Acknowledgements

The financial supports from the funds of the Fundamental Research Funds for the Central Universities (2018YJS171, 2018JBZ104), the China National Science (61771035) and the Bei**g National Science (4162047) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Wang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shang, P. & Liu, Z. Analysis of time series through complexity–entropy curves based on generalized fractional entropy. Nonlinear Dyn 96, 585–599 (2019). https://doi.org/10.1007/s11071-019-04808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04808-x

Keywords

Navigation