Log in

Local discontinuous Galerkin method for distributed-order time and space-fractional convection–diffusion and Schrödinger-type equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We develop a local discontinuous Galerkin finite element method for the distributed-order time and Riesz space-fractional convection–diffusion and Schrödinger-type equations. The stability of the presented schemes is proved and optimal order of convergence \(\mathcal {O}(h^{N+1}+(\Delta t)^{1+\frac{\theta }{2}}+\theta ^{2})\) for the Riesz space-fractional diffusion and Schrödinger-type equations with distributed order in time, an order of convergence of \(\mathcal {O}(h^{N+\frac{1}{2}}+(\Delta t)^{1+\frac{\theta }{2}}\) \(+\theta ^{2})\) is provided for the Riesz space-fractional convection–diffusion equations with distributed order in time where h, \(\theta \) and \(\Delta t\) are space step size, the distributed-order variables and the step sizes in time, respectively. Finally, the performed numerical examples confirm the optimal convergence order and illustrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Atanackovic, T., Budincevic, M., Pilipovic, S.: On a fractional distributed-order oscillator. J. Phys. A Math. Gen. 38, 6703 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caputo, M.: Linear models of dissipation whose Q is almost frequency independentII. Geophys. J. Int. 13, 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  4. Hartley, T.T., Lorenzo, C.F.: Fractional system identification: an approach using continuous order-distributions. NASA/TM-1999-209640 (1999)

  5. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Naghibolhosseini, M.: Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear Ph.D thesis, City University of New York, NY (2015)

  7. Caputo, M.: Diffusion with space memory modelled with distributed order space fractional differential equations. Ann. Geophys. 46, 223–234 (2003)

    Google Scholar 

  8. Sokolov, A.C.I., Klafter, J.: Distributed order fractional kinetics. Acta Phys. Pol. B 35, 1323–1341 (2004)

    Google Scholar 

  9. Caputo, M.: Elasticitàe Dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  10. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Ford, N.J., Morgado, M.L.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64, 2973–2981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos. Trans. R. Soc. A 371, 20120153 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80, 825–838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bhrawy, A., Zaky, M.: Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn. 89, 1415–1432 (2017)

    Article  MATH  Google Scholar 

  16. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, New York (2011)

    MATH  Google Scholar 

  17. Zeng, S., Migórski, S.: A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun. Nonlinear Sci. Numer. Simul. 56, 34–48 (2018)

    Article  MathSciNet  Google Scholar 

  18. Mahmoud, G.M., Ahmed, M.E., Abed-Elhameed, T.M.: On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization. Optik Int. J. Light Electron Opt. 130, 398–406 (2017)

    Article  Google Scholar 

  19. Yüzbaşı, Ş., Karaçayır, M.: An exponential galerkin method for solutions of hiv infection model of \({CD4}^{+}\) T-cells. Comput. Biol. Chem. 67, 205–212 (2017)

    Article  MathSciNet  Google Scholar 

  20. Mahmoud, G.M., Abed-Elhameed, T.M., Ahmed, M.E.: Generalization of combination-combination synchronization of chaotic n-dimensional fractional-order dynamical systems. Nonlinear Dyn. 83, 1885–1893 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yüzbaşı, Ş., Karaçayır, M.: A galerkin-like approach to solve high-order integrodifferential equations with weakly singular kernel. Kuwait J. Sci. 43, 106–120 (2016)

    MathSciNet  Google Scholar 

  22. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. El-Sayed, A., Gaber, M.: On the finite caputo and finite Riesz derivatives. Electron. J. Theor. Phys. 3, 81–95 (2006)

    Google Scholar 

  24. Muslih, S.I., Agrawal, O.P.: Riesz fractional derivatives and fractional dimensional space. Int. J. Theor. Phys. 49, 270–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  28. Cockburn, B., Dawson, C.: Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems. Comput. Geosci. 6, 505–522 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56, 159–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time-step** method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32, 906–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deng, W., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, Q., Hesthaven, J.S.: Discontinuous Galerkin method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 52, 405–423 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Aboelenen, T.: A direct discontinuous Galerkin method for fractional convection-diffusion and Schrödinger type equations. ar**v:1708.04546 (2017)

  36. Aboelenen, T., El-Hawary, H.: A high-order nodal discontinuous Galerkin method for a linearized fractional Cahn–Hilliard equation. Comput. Math. Appl. 73, 1197–1217 (2017)

    Article  MathSciNet  Google Scholar 

  37. Aboelenen, T.: A high-order nodal discontinuous Galerkin method for nonlinear fractional Schrödinger type equations. Commun. Nonlinear Sci. Numer. Simul. 54, 428–452 (2018)

    Article  MathSciNet  Google Scholar 

  38. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993). https://books.google.co.in/books?id=MOp_QgAACAAJ

  39. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations (North-Holland Mathematics Studies), vol. 204. Elsevier, New York (2006)

    Google Scholar 

  41. Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ciarlet, P.G.: Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  43. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Aboelenen.

Appendices

Appendix A: Proof Of Theorem 4.1

Set \((v,\psi ,\phi ,\eta )=(u_{h}^{n},p_{h}^{n}-q_{h}^{n}, u_{h}^{n},r_{h}^{n})\) in (3.12), and define \(\theta (u_{h}^{n})=\int ^{u_{h}^{n}}f(s_{h}^{n})\mathrm{d}s_{h}^{n}\). Then the following result holds:

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}u_{h}^{n},u_{h}^{n}\right) _{D^{k}} -\varepsilon \big (p_{h}^{n}, u_{h}^{n}\big )_{D^{k}}\nonumber \\&\quad \quad -\,(\theta (u_{h}^{n}))^{-}_{k+\frac{1}{2}} +(\theta (u_{h}^{n}))^{+}_{k-\frac{1}{2}}+ \big ((\widehat{f}(u_{h}^{n})u^{-})_{k+\frac{1}{2}}\nonumber \\&\quad \quad -\,(\widehat{f}(u_{h}^{n}) (u_{h}^{n})^{+})_{k-\frac{1}{2}}\big )-\big (p_{h}^{n},q_{h}^{n}\big )_{D^{k}} +\big (p_{h}^{n},p_{h}^{n}\big )_{D^{k}}\nonumber \\&\quad \quad +\,\big (\Delta _{(\beta -2)/2}q^{n}_{h},q_{h}^{n}\big )_{D^{k}} -\big (\Delta _{(\beta -2)/2}q^{n}_{h},p_{h}^{n}\big )_{D^{k}}\nonumber \\&\quad +\,\big (r_{h}^{n},r_{h}^{n}\big )_{D^{k}} +\big (u_{h}^{n},\frac{\partial r_{h}^{n}}{\partial x}\big )_{D^{k}}+\big (q_{h}^{n},u_{h}^{n}\big )_{D^{k}}\nonumber \\&\quad \quad +\,\big (r_{h}^{n},\frac{\partial u_{h}^{n}}{\partial x}\big )_{D^{k}} -\big ((\widehat{u}^{n}_{h}(r_{h}^{n})^{-})_{k+\frac{1}{2}} -(\widehat{u}^{n}_{h}(r_{h}^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad \quad -\,\big ((\widehat{r}^{n}_{h}(u_{h}^{n})^{-})_{k+\frac{1}{2}} -(\widehat{r}^{n}_{h}(u_{h}^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad =0. \end{aligned}$$
(A.1)

Summing over k, with the numerical fluxes (3.13), we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}u_{h}^{n},u_{h}^{n}\right) -\varepsilon \big (p_{h}^{n}, u_{h}^{n}\big )\nonumber \\&-\sum _{k=1}^{K}\big ((\theta (u_{h}^{n}))^{-}_{k+\frac{1}{2}} -(\theta (u_{h}^{n}))^{+}_{k-\frac{1}{2}}\big )\nonumber \\&\quad +\,\sum _{k=1}^{K}\big ((\widehat{f}(u_{h}^{n})u^{-})_ {k+\frac{1}{2}}-(\widehat{f}(u_{h}^{n}) (u_{h}^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad -\,\big (p_{h}^{n},q_{h}^{n}\big ) +\big (p_{h}^{n},p_{h}^{n}\big )\nonumber \\&\quad +\,\big (\Delta _{(\beta -2)/2}q^{n}_{h},q_{h}^{n}\big ) -\big (\Delta _{(\beta -2)/2}q^{n}_{h},p_{h}^{n}\big )\nonumber \\&\quad +\,\big (r_{h}^{n},r_{h}^{n}\big )+\big (q_{h}^{n},u_{h}^{n}\big ) =0. \end{aligned}$$
(A.2)

Here \(\widehat{f}((u_{h}^{n})^{-},(u_{h}^{n})^{+})\) is monotone flux, we have

$$\begin{aligned}&\sum _{k=1}^{K}\left( (\widehat{f}(u_{h}^{n})u^{-})_{k+\frac{1}{2}} -(\widehat{f}(u_{h}^{n})(u_{h}^{n})^{+})_{k-\frac{1}{2}}\right) \nonumber \\&\quad -\, \sum _{k=1}^{K}\left( (\theta (u_{h}^{n}))^{-}_{k+\frac{1}{2}} -(\theta (u_{h}^{n}))^{+}_{k-\frac{1}{2}}\right) >0. \end{aligned}$$
(A.3)

This implies that

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}u_{h}^{n},u_{h}^{n}\right) +\big (r_{h}^{n},r_{h}^{n}\big )\nonumber \\&\quad +\,\big (p_{h}^{n},p_{h}^{n}\big )+\big (\Delta _{(\beta -2)/2} q^{n}_{h},q_{h}^{n}\big )\nonumber \\&\le \big (\Delta _{(\beta -2)/2}q^{n}_{h},p_{h}^{n}\big ) -\big (q_{h}^{n},u_{h}^{n}\big )\nonumber \\&\quad +\,\big (p_{h}^{n},q_{h}^{n}\big ) +\varepsilon \big (p_{h}^{n}, u_{h}^{n}\big ). \end{aligned}$$
(A.4)

Employing Young’s inequality and Lemma 4, we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t}^{\alpha _{j}} u_{h}^{n},u_{h}^{n}\right) +\Vert r_{h}^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&+\big (\Delta _{(\beta -2)/2}q^{n}_{h},q_{h}^{n}\big )\le c\Vert u_{h}^{n}\Vert ^{2}_{L^{2}(\varOmega )}+c_{1}\Vert q_{h}^{n}\Vert ^{2}_{L^{2}(\varOmega )}.\nonumber \\ \end{aligned}$$
(A.5)

Recalling Lemma 4, we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}u_{h}^{n},u_{h}^{n}\right) +\Vert r_{h}^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad \le c\Vert u_{h}^{n}\Vert ^{2}_{L^{2}(\varOmega )}. \end{aligned}$$
(A.6)

It then follows that

$$\begin{aligned}&\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}u^{n},u^{n}_{h}\right) \nonumber \\&\quad \le \left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})u^{l}_{h},u^{n}_{h}\right) \nonumber \\&\qquad +\, \left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}} a_{n-1}^{\alpha _{j}}u^{0}_{h},u^{n}_{h}\right) + c\Vert u_{h}^{n}\Vert ^{2}_{L^{2}(\varOmega )}.\nonumber \\ \end{aligned}$$
(A.7)

Using Cauchy–Schwarz inequality, we obtain

$$\begin{aligned}&\Vert u_{h}^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad \le c_{1}\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert u_{h}^{l}\Vert _{L^{2}(\varOmega )}\nonumber \\&\qquad \Vert u_{h}^{n}\Vert _{L^{2}(\varOmega )}+c_{2} \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1} ^{\alpha _{j}}\Vert u_{h}^{0}\Vert _{L^{2}(\varOmega )}\nonumber \\&\qquad \Vert u_{h}^{n}\Vert _{L^{2}(\varOmega )}+cQ\Vert u_{h}^{n}\Vert ^{2}_{L^{2}(\varOmega )}, \end{aligned}$$
(A.8)

where \(Q=\frac{1}{\sum _{j=1}^{S}\frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}}\) and provided c is sufficiently small such that \(1-cQ>0\), we obtain that

$$\begin{aligned}&\Vert u_{h}^{n}\Vert _{L^{2}(\varOmega )}\nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert u_{h}^{l}\Vert _{L^{2}(\varOmega )}\right. \nonumber \\&\qquad \left. +\, \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}} Qa_{n-1}^{\alpha _{j}}\Vert u_{h}^{0}\Vert _{L^{2}(\varOmega )}\right) . \end{aligned}$$
(A.9)

Clearly the theorem is true for \(n = 1\). It is also true for \(n = 1, 2, \ldots , m-1\). So, by (A.9), we have

$$\begin{aligned}&\Vert u_{h}^{m}\Vert _{L^{2}(\varOmega )}\nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{m-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert u_{h}^{l}\Vert _{L^{2}(\varOmega )}\right. \nonumber \\&\qquad \left. +\, \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}} Qa_{n-1}^{\alpha _{j}}\Vert u_{h}^{0}\Vert _{L^{2}(\varOmega )}\right) \nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{m-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\ |u_{h}^{0}\Vert _{L^{2}(\varOmega )}\right. \nonumber \\&\qquad \left. +\, \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1} ^{\alpha _{j}}\Vert u_{h}^{0}\Vert _{L^{2}(\varOmega )}\right) \nonumber \\&\quad =C\Vert u_{h}^{0}\Vert _{L^{2}(\varOmega )}. \end{aligned}$$
(A.10)

\(\square \)

Appendix B: Proof Of Theorem 2

From (4.3), we can get the error equation

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}(u^{n}-u^{n}_{h}),v\right) _{D^{k}} +\big (\gamma (x)^{n},v\big )_{D^{k}} \nonumber \\&\quad -\,\varepsilon \big (p^{n}-p^{n}_{h},v\big )_{D^{k}} +\big (p^{n}-p^{n}_{h},\psi \big )_{D^{k}} \nonumber \\&\quad +\,\big (q^{n}-q^{n}_{h},\phi \big )_{D^{k}}-\big (\Delta _{ (\beta -2)/2}(q^{n}-q^{n}_{h}),\psi \big )_{D^{k}}\nonumber \\&\quad +\,\big (r^{n}-r^{n}_{h},\frac{\partial \phi }{\partial x}\big )_{D^{k}}-((\widehat{r}^{n}-\widehat{r}^{n}_{h}) \phi ^{-})_{k+\frac{1}{2}}\nonumber \\&\quad +\,((\widehat{r}^{n}-\widehat{r}^{n}_{h})\phi ^{+}) _{k-\frac{1}{2}}+\big (r^{n}-r^{n}_{h},\eta \big )_{D^{k}}\nonumber \\&\quad +\,\big (u^{n}-u^{n}_{h},\frac{\partial \eta }{\partial x}\big )_{D^{k}} -((\widehat{u}^{n}-\widehat{u}^{n}_{h})\eta ^{-})_{k+\frac{1}{2}}\nonumber \\&\quad +\,((\widehat{u}^{n}-\widehat{u}^{n}_{h})\eta ^{+})_{k-\frac{1}{2}}=0. \end{aligned}$$
(B.1)

Using (4.7), the error equation (B.1) can be written

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j}) \Delta \tau _{j}\delta _{t}^{\alpha _{j}}(\pi ^{n}-\pi ^{e}_{n}),v\right) _{D^{k}} +\big (\gamma (x)^{n},v\big )_{D^{k}} \nonumber \\&\quad -\,\varepsilon \big (\sigma ^{n}-\sigma ^{e}_{n},v\big )_{D^{k}} +\big (\sigma ^{n}-\sigma ^{e}_{n},\psi \big )_{D^{k}} \nonumber \\&\quad -\, \big (\Delta _{(\beta -2)/2}(\varphi ^{n}-\varphi ^{e}_{n}),\psi \big )_{D^{k}} +\big (\varphi ^{n}-\varphi ^{e}_{n},\phi \big )_{D^{k}} \nonumber \\&\quad +\,\big (\psi ^{n}-\psi ^{e}_{n},\frac{\partial \phi }{\partial x}\big )_{D^{k}} -((\psi ^{n}-\psi ^{e}_{n})^{-}\phi ^{-})_{k+\frac{1}{2}}\nonumber \\&\quad +\,((\psi ^{n}-\psi ^{e}_{n})^{-}\phi ^{+})_{k-\frac{1}{2}} +\big (\psi ^{n}-\psi ^{e}_{n},\eta \big )_{D^{k}} \nonumber \\&\quad +\,\big (\pi ^{n}-\pi ^{e}_{n},\frac{\partial \eta }{\partial x}\big ) _{D^{k}}-((\pi ^{n}-\pi ^{e}_{n})^{+}\eta ^{-})_{k+\frac{1}{2}} \nonumber \\&\quad +\,((\pi ^{n}-\pi ^{e}_{n})^{+}\eta ^{+})_{k-\frac{1}{2}}=0, \end{aligned}$$
(B.2)

and taking the test functions

$$\begin{aligned} v=\pi ^{n},\quad \psi =\sigma ^{n}-\varphi ^{n},\quad \phi =\pi ^{n},\quad \eta =\psi ^{n}, \end{aligned}$$
(B.3)

we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}(\pi ^{n}-\pi ^{e}_{n}),\pi ^{n}\right) +\big (\gamma (x)^{n},\pi ^{n}\big )\nonumber \\&\quad -\,\varepsilon \big (\sigma ^{n}-\sigma ^{e}_{n},\pi ^{n}\big ) +\big (\sigma ^{n}-\sigma ^{e}_{n},-\varphi ^{n}+\sigma ^{n}\big )\nonumber \\&\quad -\, \big (\Delta _{(\beta -2)/2}(\varphi ^{n}-\varphi ^{e}_{n}), -\varphi ^{n}+\sigma ^{n}\big )\nonumber \\&\quad -\,\big (\pi ^{e}_{n},\frac{\partial \psi ^{n}}{\partial x}\big ) +\big (\varphi ^{n}-\varphi ^{e}_{n},\pi ^{n}\big )\nonumber \\&\quad -\,\big (\psi ^{e}_{n},\frac{\partial \pi ^{n}}{\partial x}\big ) +\big (\psi ^{n}-\psi ^{e}_{n},\psi ^{n}\big )\nonumber \\&\quad +\,\sum _{k=1}^{K}\big (((\psi ^{e}_{n})^{-}(\pi ^{n}) ^{-})_{k+\frac{1}{2}}-((\psi ^{e}_{n})^{-}(\pi ^{n})^{+}) _{k-\frac{1}{2}}\big )\nonumber \\&\quad +\,\sum _{k=1}^{K}\big (((\pi ^{e}_{n})^{+}(\psi ^{n})^{-})_ {k+\frac{1}{2}}-((\pi ^{e}_{n})^{+}(\psi ^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad =0, \end{aligned}$$
(B.4)

by the projection properties \(P^{+}\) and \(P^{-}\) we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t}^{\alpha _{j}} (\pi ^{n}-\pi ^{e}_{n}),\pi ^{n}\right) -\varepsilon \big (\sigma ^{n}-\sigma ^{e}_{n},\pi ^{n}\big )\nonumber \\&\quad +\,\big (\gamma (x)^{n},\pi ^{n}\big )+\big (\sigma ^{n}- \sigma ^{e}_{n},-\varphi ^{n}+\sigma ^{n}\big )\nonumber \\&\quad -\, \big (\Delta _{(\beta -2)/2}(\varphi ^{n}-\varphi ^{e}_{n}), -\varphi ^{n}+\sigma ^{n}\big )\nonumber \\&\quad +\,\big (\varphi ^{n}-\varphi ^{e}_{n},\pi ^{n}\big ) +\sum _{k=1}^{K}\big (((\psi ^{e}_{n})^{-}(\pi ^{n})^{-})_{k+\frac{1}{2}}\nonumber \\&\quad -\,((\psi ^{e}_{n})^{-}(\pi ^{n})^{+})_{k-\frac{1}{2}}\big ) +\big (\psi ^{n}-\psi ^{e}_{n},\psi ^{n}\big )\nonumber \\&\quad +\,\sum _{k=1}^{K}\big (((\pi ^{e}_{n})^{+}(\psi ^{n})^{-})_{k+\frac{1}{2}} -((\pi ^{e}_{n})^{+}(\psi ^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad =0. \end{aligned}$$
(B.5)

Employing Young’s inequality and Lemma 4 and the property of interpolation (4.8) and (4.4), we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t}^{\alpha _{j}} \pi ^{n},\pi ^{n}\right) +\big (\sigma ^{n},\sigma ^{n}\big )\nonumber \\&\quad +\, \big (\Delta _{(\beta -2)/2}\varphi ^{n},\varphi ^{n}\big ) +\big (\psi ^{n},\psi ^{n}\big )\nonumber \\&\le C(h^{2N+2}+(\Delta t)^{4+\theta }+\theta ^{4})+c_{1}\Vert \psi ^{n}\Vert ^{2}_{L^{2} (\varOmega )}\nonumber \\&\quad +\,\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}\pi ^{e}_{n} ,\pi ^{n}\right) +c_{2}\Vert \sigma ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad +\, c_{3}\Vert \varphi ^{n}\Vert ^{2}_{L^{2}(\varOmega )} +c\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}, \end{aligned}$$
(B.6)

by using Lemma 5, (4.7) and the interpolation property (4.8), we obtain

$$\begin{aligned}&\Vert \delta _{t}^{\alpha }(\mathcal {P}^{+}u(x,t_{n}) -u(x,t_{n}))\Vert _{L^{2}(\varOmega )}\nonumber \\&\quad \le C\big (h^{N+1}+(\Delta t)^{2-\alpha }\big ). \end{aligned}$$
(B.7)

From (3.1), (4.5) and (B.7), we obtain

$$\begin{aligned}&\left\| \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j} \delta _{t}^{\alpha _{j}}(\mathcal {P}^{+}u(x,t_{n})-u(x,t_{n})) \right\| _{L^{2}(\varOmega )}\nonumber \\&\quad \le C\left( h^{N+1}+(\Delta t)^{1+\frac{\theta }{2}}+\theta ^{2}\right) . \end{aligned}$$
(B.8)

Hence

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j} \delta _{t}^{\alpha _{j}}\pi ^{n},\pi ^{n}\right) +\big (\sigma ^{n},\sigma ^{n}\big )\nonumber \\&\quad +\, \big (\Delta _{(\beta -2)/2}\varphi ^{n},\varphi ^{n}\big ) +\big (\psi ^{n},\psi ^{n}\big )\nonumber \\&\le C\big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big ) +c_{2}\Vert \sigma ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad +\, c_{3}\Vert \varphi ^{n}\Vert ^{2}_{L^{2}(\varOmega )} +c\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )} +c_{1}\Vert \psi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}.\nonumber \\ \end{aligned}$$
(B.9)

Recalling Lemma 2 and provided \(c_{i},\,\,i=1,2\) are sufficiently small such that \(c_{i}\le 1\), we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}\pi ^{n},\pi ^{n}\right) \nonumber \\&\le C\big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big )+c\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}. \end{aligned}$$
(B.10)

It then follows that

$$\begin{aligned}&\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}\pi ^{n},\pi ^{n}_{h}\right) \nonumber \\&\quad \le \left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\pi ^{l},\pi ^{n}\right) \nonumber \\&\qquad +\, \left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}a_{n-1} ^{\alpha _{j}}\pi ^{0},\pi ^{n}\right) + c\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\qquad +\,C\big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big ). \end{aligned}$$
(B.11)

Employing Young’s inequality, we obtain

$$\begin{aligned}&\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad \le \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert \pi ^{l}\Vert ^{2}_{L^{2} (\varOmega )}\nonumber \\&\qquad +\,\frac{1}{4}\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q(a_{0} ^{\alpha _{j}}-a_{n-1}^{\alpha _{j}}) \Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\qquad +\, \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1}^{\alpha _{j}} \Vert \pi ^{0}\Vert ^{2}_{L^{2}(\varOmega )} +cQ\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\qquad +\sum _{j=1}^{S}\frac{W(\alpha _{j})\Delta \tau _{j}}{4\lambda _{j}} Qa_{n-1}^{\alpha _{j}}\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\qquad +\,CQ\big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big ). \end{aligned}$$
(B.12)

Notice the facts that

$$\begin{aligned} \Vert \pi ^{0}\Vert _{L^{2}(\varOmega )}\le Ch^{N+1}. \end{aligned}$$
(B.13)

Thus,

$$\begin{aligned}&\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad \le \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert \pi ^{l}\Vert ^{2}_{L^{2} (\varOmega )}\nonumber \\&\qquad +\,\left( cQ+\frac{1}{4}\right) \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\Vert \pi ^{n} \Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\qquad +\,C\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1}^{\alpha _{j}} h^{2N+2}\nonumber \\&\qquad +\,C\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1} ^{\alpha _{j}}\left( h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\right) ,\nonumber \\ \end{aligned}$$
(B.14)

provided c is sufficiently small such that \(\frac{3}{4}-cQ>0\), we obtain that

$$\begin{aligned}&\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}}) \Vert \pi ^{l}\Vert ^{2}_{L^{2}(\varOmega )}\right. \nonumber \\&\qquad \left. +\,\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1}^{\alpha _{j}} \big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big )\right) .\nonumber \\ \end{aligned}$$
(B.15)

Clearly the theorem is true for \(n = 0\). It is also true for \(n = 1, 2, \ldots , m-1\). Then, by (B.15), we have

$$\begin{aligned}&\Vert \pi ^{m}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{m-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert \pi ^{l}\Vert ^{2}_{L^{2}(\varOmega )}\right. \nonumber \\&\qquad \left. +\,\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1} ^{\alpha _{j}}\big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big )\right) \nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{m-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})(h^{2N+2}\right. \nonumber \\&\qquad +\,(\Delta t)^{2+\theta }+\theta ^{4})+\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1}^{\alpha _{j}}\nonumber \\&\left. \qquad \big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big )\right) \nonumber \\&\quad = C\big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big ). \end{aligned}$$
(B.16)

Finally, by using triangle inequality and standard approximation theory, we get

$$\begin{aligned} \Vert u(x,t_{m})-u_{h}^{m}\Vert _{L^{2}(\varOmega )}\le C(h^{N+1}+(\Delta t)^{1+\frac{\theta }{2}}+\theta ^{2}).\nonumber \\ \end{aligned}$$
(B.17)

\(\square \)

Appendix C: Proof Of Theorem 3

Using (4.7), the error equation (4.3) can be written

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j} \delta _{t}^{\alpha _{j}}(\pi ^{n}-\pi ^{e}_{n}),v\right) -\varepsilon \big (\sigma ^{n}-\sigma ^{e}_{n},v\big )\nonumber \\&\quad +\,\big (\gamma (x)^{n},v\big )-\sum _{k=1}^{K} \mathcal {H}_{k}(f;u,u_{h};v)\nonumber \\&\quad +\,\big (\sigma ^{n}-\sigma ^{e}_{n},\psi \big )- \big (\Delta _{(\beta -2)/2}(\varphi ^{n}-\varphi ^{e}_{n}),\psi \big )\nonumber \\&\quad +\,\big (\varphi ^{n}-\varphi ^{e}_{n},\phi \big )+\big (\psi ^{n} -\psi ^{e}_{n},\frac{\partial \phi }{\partial x}\big )\nonumber \\&\quad -\,\sum _{k=1}^{K}\big (((\psi ^{n}-\psi ^{e}_{n})^{-}\phi ^{-}) _{k+\frac{1}{2}} -((\psi ^{n}-\psi ^{e}_{n})^{-}\phi ^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad +\,\big (\psi ^{n}-\psi ^{e}_{n},\eta \big )+\big (\pi ^{n}- \pi ^{e}_{n},\frac{\partial \eta }{\partial x}\big )\nonumber \\&\quad -\,\sum _{k=1}^{K}\big (((\pi ^{n}-\pi ^{e}_{n})^{+}\eta ^{-}) _{k+\frac{1}{2}} -((\pi ^{n}-\pi ^{e}_{n})^{+}\eta ^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad =0.\nonumber \\ \end{aligned}$$
(C.1)

Following the proof of Theorem 2, we take the test functions

$$\begin{aligned} v=\pi ^{n},\quad \psi =-\varphi ^{n}+\sigma ^{n},\quad \phi =\pi ^{n},\quad \eta =\psi ^{n},\nonumber \\ \end{aligned}$$
(C.2)

we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _ {t}^{\alpha _{j}}(\pi ^{n}-\pi ^{e}_{n}) ,\pi ^{n}\right) +\big (\gamma (x)^{n},\pi ^{n}\big )\nonumber \\&\quad -\,\varepsilon \big (\sigma ^{n}-\sigma ^{e}_{n},\pi ^{n}\big ) -\sum _{k=1}^{K}\mathcal {H}_{k}(f;u,u_{h};\pi ^{n})\nonumber \\&\quad +\,\big (\sigma ^{n}-\sigma ^{e}_{n},-\varphi ^{n}+\sigma ^{n}\big ) +\big (\varphi ^{n}-\varphi ^{e}_{n},\pi ^{n}\big )\nonumber \\&\quad -\, \big (\Delta _{(\beta -2)/2}(\varphi ^{n}-\varphi ^{e}_{n}), -\varphi ^{n}+\sigma ^{n}\big )\nonumber \\&\quad +\,\big (\psi ^{n}-\psi ^{e}_{n},\frac{\partial \pi ^{n}}{\partial x}\big ) -\sum _{k=1}^{K}\big (((\psi ^{n}-\psi ^{e}_{n})^{-}(\pi ^{n})^{-}) _{k+\frac{1}{2}}\nonumber \\&\quad -\,((\psi ^{n}-\psi ^{e}_{n})^{-}(\pi ^{n})^{+}) _{k-\frac{1}{2}}\big )+\big (\psi ^{n}-\psi ^{e}_{n},\psi ^{n}\big )\nonumber \\&\quad +\,\big (\pi ^{n}-\pi ^{e}_{n},\frac{\partial \psi ^{n}}{\partial x}\big )-\sum _{k=1}^{K}\big (((\pi ^{n}-\pi ^{e}_{n})^{+}(\psi ^{n})^{-}) _{k+\frac{1}{2}}\nonumber \\&\quad -\,((\pi ^{n}-\pi ^{e}_{n})^{+}(\psi ^{n})^{+})_{k-\frac{1}{2}}\big )=0, \end{aligned}$$
(C.3)

by the projection properties \(P^{+}\) and \(P^{-}\), we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t}^{\alpha _{j}} (\pi ^{n}-\pi ^{e}_{n}),\pi ^{n}\right) -\varepsilon \big (\sigma ^{n}- \sigma ^{e}_{n},\pi ^{n}\big )\nonumber \\&\quad +\,\big (\gamma (x)^{n},\pi ^{n}\big )-\sum _{k=1}^{K}\mathcal {H} _{k}(f;u,u_{h};\pi ^{n})\nonumber \\&\quad +\,\big (\sigma ^{n}-\sigma ^{e}_{n},-\varphi ^{n}+\sigma ^{n}\big ) +\big (\varphi ^{n}-\varphi ^{e}_{n},\pi ^{n}\big )\nonumber \\&\quad -\,\big (\Delta _{(\beta -2)/2}(\varphi ^{n}-\varphi ^{e}_{n}), -\varphi ^{n}+\sigma ^{n}\big )\nonumber \\&\quad +\,\sum _{k=1}^{K}\big (((\psi ^{e}_{n})^{-}(\pi ^{n})^{-})_{k+\frac{1}{2}} -((\psi ^{e}_{n})^{-}(\pi ^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad +\,\big (\psi ^{n}-\psi ^{e}_{n},\psi ^{n}\big ) +\sum _{k=1}^{K}\big (((\pi ^{e}_{n})^{+}(\psi ^{n})^{-})_{k+\frac{1}{2}}\nonumber \\&\quad -\,((\pi ^{e}_{n})^{+}(\psi ^{n})^{+})_{k-\frac{1}{2}}\big )=0. \end{aligned}$$
(C.4)

Employing Young’s inequality and Lemma 4 and the property of interpolation (4.8), (B.7) and (B.8), we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t}^{\alpha _{j}} \pi ^{n},\pi ^{n}\right) + \big (\Delta _{(\beta -2)/2}\varphi ^{n},\varphi ^{n}\big )\nonumber \\&\quad +\,\big (\sigma ^{n},\sigma ^{n}\big )+\big (\psi ^{n},\psi ^{n}\big )\nonumber \\&\le C\big (h^{2N+2}+(\Delta t)^{2+\theta }+\theta ^{4}\big )+c_{2} \Vert \sigma ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad +\, c_{3}\Vert \varphi ^{n}\Vert ^{2}_{L^{2}(\varOmega )} +c\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}+c_{1}\Vert \psi ^{n}\Vert ^{2}_{L^{2}(\varOmega )} \nonumber \\&\quad -\,\frac{1}{4}\kappa (f^{*};u_{h}^{n})+(C+C_{*}(\Vert \pi ^{n}\Vert _{\infty }\nonumber \\&\quad +\,h^{-1}\Vert e_{u}\Vert _{\infty }^{2}))\Vert \pi ^{n}\Vert ^{2}+(C+C_{*}h^{-1}\Vert e_{u}\Vert _{\infty }^{2})h^{2N+1}.\nonumber \\ \end{aligned}$$
(C.5)

Recalling Lemma 2 and provided \(c_{i},\,\,i=1,2\) are sufficiently small such that \(c_{i}\le 1\), we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t}^{\alpha _{j}} \pi ^{n},\pi ^{n}\right) \nonumber \\&\quad \le C\big (h^{2N+1}+(\Delta t)^{2+\theta }+\theta ^{4}\big ) +c_{4}\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}.\nonumber \\ \end{aligned}$$
(C.6)

It then follows that

$$\begin{aligned}&\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}\pi ^{n},\pi ^{n}_{h}\right) \nonumber \\&\quad \le \left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\pi ^{l},\pi ^{n}\right) \nonumber \\&\qquad +\, \left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}a_{n-1} ^{\alpha _{j}}\pi ^{0},\pi ^{n}\right) + c\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\qquad +\,C\big (h^{2N+1}+(\Delta t)^{2+\theta }+\theta ^{4}\big ). \end{aligned}$$
(C.7)

Employing Young’s inequality, we obtain

$$\begin{aligned}&\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega _{h})}\nonumber \\&\quad \le \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert \pi ^{l} \Vert ^{2}_{L^{2}(\varOmega _{h})}\nonumber \\&\qquad +\,\left( cQ+\frac{1}{4}\right) \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\Vert \pi ^{n}\Vert ^{2} _{L^{2}(\varOmega _{h})}\nonumber \\&\qquad +\,C\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1}^{\alpha _{j}} h^{2N+2}\nonumber \\&\qquad +\,C\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1} ^{\alpha _{j}}\big (h^{2N+1}+(\Delta t)^{2+\theta }+\theta ^{4}\big ),\nonumber \\ \end{aligned}$$
(C.8)

provided c is sufficiently small such that \(\frac{3}{4}-cQ>0\), we obtain that

$$\begin{aligned}&\Vert \pi ^{n}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{n-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert \pi ^{l}\Vert ^{2}_{L^{2} (\varOmega )}\right. \nonumber \\&\qquad \left. +\,\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1}^{\alpha _{j}} \big (h^{2N+1}+(\Delta t)^{2+\theta }+\theta ^{4}\big )\right) .\nonumber \\ \end{aligned}$$
(C.9)

Clearly the theorem is true for \(n = 0\). It is also valid for \(n = 1, 2, \ldots , m-1\). Then, by (C.9), we have

$$\begin{aligned}&\Vert \pi ^{m}\Vert ^{2}_{L^{2}(\varOmega )}\nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{m-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\Vert \pi ^{l}\Vert ^{2}_{L^{2} (\varOmega )}\right. \nonumber \\&\qquad \left. +\,\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1} ^{\alpha _{j}}\big (h^{2N+1}+(\Delta t)^{2+\theta }+\theta ^{4}\big )\right) \nonumber \\&\quad \le C\left( \sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Q\sum _{l=1}^{m-1} (a_{n-l-1}^{\alpha _{j}}-a_{n-l}^{\alpha _{j}})\big (h^{2N+1}\right. \nonumber \\&\qquad +\,(\Delta t)^{2+\theta }+\theta ^{4}\big )\nonumber \\&\qquad \left. +\,\sum _{j=1}^{S} \frac{W(\alpha _{j})\Delta \tau _{j}}{\lambda _{j}}Qa_{n-1} ^{\alpha _{j}}\big (h^{2N+1}+(\Delta t)^{4+\theta }+\theta ^{4}\big )\right) \nonumber \\&\quad = C\big (h^{2N+1}+(\Delta t)^{2+\theta }+\theta ^{4}\big ). \end{aligned}$$
(C.10)

Finally, by using triangle inequality and standard approximation theory, we can get (4.15). \(\square \)

Appendix D: Proof Of Lemma 8

From the Galerkin orthogonality (5.11), we get

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}(\pi ^{n}-\pi ^{e}_{n}),\vartheta _{1}\right) _{D^{k}} +\big (\tau ^{n}-\tau ^{e}_{n},\phi _{x}\big )_{D^{k}} \nonumber \\&\quad -\,\big (\Delta _{(\beta -2)/2}(\epsilon ^{n}-\epsilon ^{e}_{n}),\rho \big ) _{D^{k}}+\big (\vartheta ^{n}-\vartheta ^{e}_{n},\psi _{x}\big )_{D^{k}}\nonumber \\&\quad +\,\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t}^{\alpha _{j}} (\sigma -\sigma ^{e}),\chi \right) _{D^{k}} +\big (\sigma ^{n}-\sigma ^{e}_{n},\varphi _{x}\big )_{D^{k}}\nonumber \\&\quad -\,\big (\Delta _{(\beta -2)/2}(\varphi ^{n}-\varphi ^{e}_{n}), \varrho \big )_{D^{k}}+\big (\pi ^{n}-\pi ^{e}_{n},\zeta _{x}\big )_{D^{k}}\nonumber \\&\quad +\,\varepsilon _{2} \big (\sigma ^{n}-\sigma ^{e}_{n},\vartheta _{1} \big )_{D^{k}}- \varepsilon _{2}\big (\pi ^{n}-\pi ^{e}_{n},\chi \big )_{D^{k}}\nonumber \\&\quad +\,\big (\epsilon ^{n}-\epsilon ^{e}_{n},\phi \big )_{D^{k}} +\big (\tau ^{n}-\tau ^{e}_{n},\varphi \big )_{D^{k}} +\big (\varpi ^{n}-\varpi ^{e}_{n},\varrho \big )_{D^{k}}\nonumber \\&\quad +\,\big (\phi ^{n}-\phi ^{e}_{n},\rho \big )_{D^{k}}+\big (\varphi ^{n} -\varphi ^{e}_{n},\psi \big )_{D^{k}} +\big (\vartheta ^{n} -\vartheta ^{e}_{n},\zeta \big )_{D^{k}}\nonumber \\&\quad +\,\varepsilon _{1}\big (\phi ^{n} -\phi ^{e}_{n},\vartheta _{1}\big )_{D^{k}}-\varepsilon _{1} \big (\varpi ^{n}-\varpi ^{e}_{n},\chi \big )_{D^{k}}\nonumber \\&\quad -\,\big (\gamma (q)^{n},\chi \big )+\big (\gamma (p)^{n},\vartheta _{1}\big )\nonumber \\&\quad -\,\sum _{k=1}^{K}\big (((\tau ^{n}-\tau ^{e}_{n})^{+}(\phi )^{-}) _{k+\frac{1}{2}}\ -((\tau ^{n}-\tau ^{e}_{n})^{+}(\phi )^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad -\,\sum _{k=1}^{K}\big (((\sigma ^{n}-\sigma ^{e}_{n})^{-} (\varphi )^{-})_{k+\frac{1}{2}} -((\sigma ^{n}-\sigma ^{e}_{n})^{-}(\varphi )^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad -\,\sum _{k=1}^{K}\big (((\vartheta ^{n}-\vartheta ^{e}_{n})^{+}(\psi )^{-}) _{k+\frac{1}{2}} -((\vartheta ^{n}-\vartheta ^{e}_{n})^{+}(\psi )^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad -\,\sum _{k=1}^{K} \big ((\pi ^{n}-\pi ^{e}_{n})^{-}(\zeta )^{-})_{k+\frac{1}{2}} -((\pi ^{n}-\pi ^{e}_{n})^{-}(\zeta )^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad =0. \end{aligned}$$
(D.1)

We take the test functions

$$\begin{aligned}&\vartheta _{1}=\pi ^{n},\quad \rho =\phi ^{n}-\epsilon ^{n},\quad \phi =\pi ^{n},\quad \varphi =-\vartheta ^{n},\nonumber \\&\chi =\sigma ^{n},\quad \varrho =\varpi ^{n}-\varphi ^{n},\quad \psi =-\sigma ^{n},\quad \zeta =\tau ^{n}, \end{aligned}$$
(D.2)

we obtain

$$\begin{aligned}&\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j} \delta _{t}^{\alpha _{j}}(\pi ^{n}-\pi ^{e}_{n}),\pi ^{n}\right) _{D^{k}} +\big (\tau ^{n}-\tau ^{e}_{n},\pi _{x}^{n}\big )_{D^{k}}\nonumber \\&\quad -\,\big (\Delta _{(\beta -2)/2}(\epsilon ^{n}-\epsilon ^{e}_{n}), \phi ^{n}-\epsilon ^{n}\big )_{D^{k}}+\big (\pi ^{n}-\pi ^{e}_{n}, \tau _{x}^{n}\big )_{D^{k}}\nonumber \\&\quad +\,\left( \sum _{j=1}^{S}W(\alpha _{j})\Delta \tau _{j}\delta _{t} ^{\alpha _{j}}(\sigma ^{n}-\sigma ^{e}_{n}), \sigma ^{n}\right) _{D^{k}}-\big (\sigma ^{n}-\sigma ^{e}_{n}, \vartheta _{x}^{n}\big )_{D^{k}}\nonumber \\&\quad -\,\big (\Delta _{(\beta -2)/2}(\varphi ^{n}-\varphi ^{e}_{n}), \varpi ^{n}-\varphi ^{n}\big )_{D^{k}} -\big (\vartheta ^{n}-\vartheta ^{e}_{n},\sigma _{x}^{n}\big )_{D^{k}}\nonumber \\&\quad +\,\big (\epsilon ^{n}-\epsilon ^{e}_{n},\pi \big )_{D^{k}} -\big (\tau ^{n}-\tau ^{e}_{n},\vartheta \big )_{D^{k}}\nonumber \\&\quad +\,\big (\phi ^{n}-\phi ^{e}_{n},\phi ^{n}-\epsilon ^{n}\big ) _{D^{k}}-\big (\varphi ^{n}-\varphi ^{e}_{n},\sigma ^{n}\big )_{D^{k}}\nonumber \\&\quad +\,\big (\vartheta ^{n}-\vartheta ^{e}_{n},\tau ^{n}\big )_{D^{k}} +\big (\varpi ^{n}-\varpi ^{e}_{n},\varpi ^{n}-\varphi ^{n}\big )_{D^{k}}\nonumber \\&\quad +\,\varepsilon _{1}\big (\phi ^{n} -\phi ^{e}_{n},\pi ^{n}\big )_{D^{k}}-\varepsilon _{1} \big (\varpi ^{n}-\varpi ^{e}_{n},\sigma ^{n}\big )_{D^{k}}\nonumber \\&\quad +\,\varepsilon _{2} \big (\sigma ^{n}-\sigma ^{e}_{n},\pi \big )_{D^{k}} -\varepsilon _{2} \big (\pi _{n}-\pi ^{e}_{n},\sigma \big )_{D^{k}}\nonumber \\&\quad -\,\big (\gamma (q)^{n},\sigma ^{n}\big )+\big (\gamma (p)^{n},\pi ^{n}\big )\nonumber \\&\quad -\,\sum _{k=1}^{K}\big (((\tau ^{n}-\tau ^{e}_{n})^{+}(\pi ^{n})^{-}) _{k+\frac{1}{2}} -((\tau ^{n}-\tau ^{e}_{n})^{+}(\pi ^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad +\,\sum _{k=1}^{K}\big (((\sigma ^{n}-\sigma ^{e}_{n})^{-} (\vartheta ^{n})^{-})_{k+\frac{1}{2}} -((\sigma ^{n}-\sigma ^{e}_{n})^{-}(\vartheta ^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad +\,\sum _{k=1}^{K}\big (((\vartheta ^{n}-\vartheta ^{e}_{n})^{+} (\sigma ^{n})^{-})_{k+\frac{1}{2}} -((\vartheta ^{n}-\vartheta ^{e}_{n})^{+}(\sigma ^{n})^{+}) _{k-\frac{1}{2}}\big )\nonumber \\&\quad -\,\sum _{k=1}^{K} \big ((\pi ^{n}-\pi ^{e}_{n})^{-}(\tau ^{n})^{-})_{k+\frac{1}{2}} -((\pi ^{n}-\pi ^{e}_{n})^{-}(\tau ^{n})^{+})_{k-\frac{1}{2}}\big )\nonumber \\&\quad =0.\nonumber \\ \end{aligned}$$
(D.3)

Summing over k, simplify by integration by parts and (5.6). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboelenen, T. Local discontinuous Galerkin method for distributed-order time and space-fractional convection–diffusion and Schrödinger-type equations. Nonlinear Dyn 92, 395–413 (2018). https://doi.org/10.1007/s11071-018-4063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4063-y

Keywords

Navigation