Log in

New solitary wave solutions of time-fractional coupled Jaulent–Miodek equation by using two reliable methods

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present article, we have developed new exact analytical solutions of a nonlinear evolution equation that appear in mathematical physics, specifically time-fractional coupled Jaulent–Miodek equation by tanh method and \((G'/G)\)-expansion method by means of fractional complex transform. As a result, we acquire new exact analytical solutions of Jaulent–Miodek equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fan, E.: Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics. Chaos Solitons Fractals 16, 819–839 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atangana, A., Baleanu, D.: Nonlinear fractional Jaulent–Miodek and Whitham–Broer–Kaup Equations within Sumudu transform. Abstr. Appl. Anal. 2013, 8 (2013)

  3. Jaulent, M., Miodek, I.: Nonlinear evolution equations associated with ‘Energy-dependent Schrödinger potential’. Lett. Math. Phys. 1, 243–250 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Matsuno, Y.: Reduction of dispersionless coupled Korteweg–de Vries equations to the Euler–Darboux equation. J. Math. Phys. 42(4), 1744–1760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kaya, D., El-Sayed, S.M.: A numerical method for solving Jaulent–Miodek equation. Phys. Lett. A 318, 345–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou, R.: The finite-band solution of the Jaulent–Miodek equation. J. Math. Phys. 38, 2535–2546 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, G.: \(N\)-Fold Darboux transformation of the Jaulent–Miodek equation. Appl. Math. 5, 2657–2663 (2014)

    Article  Google Scholar 

  8. Ruan, H., Lou, S.: New symmetries of the Jaulent–Miodek hierarchy. J. Phys. Soc. Jpn. 62(6), 1917–1921 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta, A.K., Saha Ray, S.: An investigation with Hermite Wavelets for accurate solution of fractional Jaulent–Miodek equation associated with energy-dependent Schrödinger potential. Appl. Math. Comput. 270, 458–471 (2015)

    MathSciNet  Google Scholar 

  10. Wang, H., **a, T.: The fractional supertrace identity and its application to the super Jaulent–Miodek hierarchy. Commun. Nonlinear Sci. Numer. Simul. 18, 2859–2867 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Bei**g (2009)

    Book  MATH  Google Scholar 

  12. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhauser, Springer (2012)

    Book  MATH  Google Scholar 

  13. Saha Ray, S., Sahoo, S.: New exact solutions of fractional Zakharov–Kuznetsov and modified Zakharov–Kuznetsov equations using fractional sub-equation method. Commun. Theor. Phys. 63, 25–30 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Saha Ray, S., Sahoo, S.: A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada–Kotera equation. Rep. Math. Phys. 75(1), 63–72 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wazwaz, A.M.: The tanh-coth and the sech methods for exact solutions of the Jaulent–Miodek equation. Phys. Lett. A 366, 85–90 (2007)

    Article  MATH  Google Scholar 

  16. Zayed, E.M.E., Rahman, H.M.A.: The extended tanh-method for finding traveling wave solutions of nonlinear evolution equations. Appl. Math. 10, 235–245 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Rashidi, M.M., Domairry, G., Dinarvand, S.: The Homotopy analysis method for explicit analytical solutions of Jaulent–Miodek equations. Numer. Methods Partial Differ. Equ. 25(2), 430–439 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Taha, W.M., Noorani, M.S.M.: Exact solutions of equation generated by the Jaulent–Miodek hierarchy by \((G^{\prime }/G)\)-expansion method. Math. Probl. Eng. 2013, 7 (2013)

  19. He, J.H., Zhang, L.N.: Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the Exp-function method. Phys. Lett. A 372(7), 1044–1047 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, J.H., Abdou, M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 34, 1421–1429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yildirim, A., Kelleci, A.: Numerical simulation of the Jaulent–Miodek equation by he’s homotopy perturbation method. World Appl. Sci. J. 7, 84–89 (2009)

  22. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wazwaz, A.M.: The tanh method: Solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations. Chaos Solitons Fractals 25, 55–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bin, Z.: \((G^{\prime }/G)\)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58, 623–630 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, G.W., Liu, X.Q., Zhang, Y.: New explicit solutions of the generalized \((2+ 1)\)-dimensional Zakharov–Kuznetsov equation. Appl. Math. 3, 523–527 (2012)

    Article  Google Scholar 

  26. Yang, X.J.: Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York (2012)

    Google Scholar 

  27. Yang, X.J.: A short note on local fractional calculus of function of one variable. J. Appl. Libr. Inf. Sci. 1(1), 1–13 (2012)

    Google Scholar 

  28. Yang, X.J.: The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems. Prespacetime J. 3(9), 913–923 (2012)

    Google Scholar 

  29. Hu, M.S., Baleanu, D., Yang, X.J.: One-phase problems for discontinuous heat transfer in fractal media. Math. Probl. Eng. 2013, 3 (2013)

  30. Bekir, A., Güner, Ö., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 2013, 8 (2013)

  31. Su, W.H., Yang, X.J., Jafari, H., Baleanu, D.: Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator. Adv. Differ. Equ. 97, 1–8 (2013)

    MathSciNet  Google Scholar 

  32. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press (Elsevier), London (2016)

  33. He, J.H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376(4), 257–259 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Güner, O., Bekir, A., Cevikel, A.C.: A variety of exact solutions for the time fractional Cahn–Allen equation. Eur. Phys. J. Plus. (2015). doi:10.1140/epjp/i2015-15146-9

Download references

Acknowledgments

This research work was financially supported by BRNS of Bhabha Atomic Research Centre, Mumbai, under Department of Atomic Energy, Government of India, vide Grant No. 2012/37P/54/BRNS/2382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saha Ray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S., Saha Ray, S. New solitary wave solutions of time-fractional coupled Jaulent–Miodek equation by using two reliable methods. Nonlinear Dyn 85, 1167–1176 (2016). https://doi.org/10.1007/s11071-016-2751-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2751-z

Keywords

Navigation