Log in

Pseudo-random bit generator based on multi-modal maps

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work we present a pseudo-random Bit Generator via unidimensional multi-modal discrete dynamical systems called k-modal maps. These multi-modal maps are based on the logistic map and are useful to yield pseudo-random sequences with longer period, i.e., in order to attend the problem of periodicity. In addition the pseudo-random sequences generated via multi-modal maps are evaluated with the statistical suite of test from NIST and satisfactory results are obtained when they are used as key stream. Furthermore, we show the impact of using these sequences in a stream cipher resulting in a better encryption quality correlated with the number of modals of the chaotic map. Finally, a statistical security analysis applied to cipher images is given. The proposed algorithm to encrypt is able to resist the chosen-plaintext attack and differential attack because the same set of encryption keys generates a different cipher image every time it is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. National Bureau of Standards: Data Encryption standard, Federal Information Processing Standards Publication 46. US Government Printing Office, Washington DC (1977)

  2. National Bureau of Standards: Data encryption standard modes of operation, Federal Information Processing Standards Publication 81. US Government Printing Office, Washington DC (1980)

  3. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  4. Knudsen, L.R., Robshaw, M.J.B.: The Block Cipher Companion. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Paar, C., Pelzl, J.: Understanding Cryptography. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  6. Mengue, A.D., Essimbi, B.Z.: C: Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 70(2), 1241–1253 (2012)

    Article  MathSciNet  Google Scholar 

  7. Li, X., Rakkiyappan, R.: Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays. Commun. Nonlinear Sci. Numer. Simulat. 18(6), 1515–1523 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Y., Fei, S., Zhang, K.: Stabilization of impulsive switched linear systems with saturated control input. Nonlinear Dyn. 69(6), 793–804 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ontañon-García, L.J., Campos-Cantón, E., Femat, R., Campos-Cantón, I., Bonilla-Marín, M.: Multivalued synchronization by Poincaré coupling. Commun. Nonlinear Sci. Numer. Simulat. 18(10), 2761–2768 (2013)

    Article  MATH  Google Scholar 

  10. Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. Numer. Simulat. 17(7), 2943–2959 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Alvarez, G., Li, S.: Some cryptographic requirements for Chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(8), 2129–2151 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Behnia, S., Akhshani, A., Akhavan, A., Mahmodi, H.: Application of tripled chaotic maps in cryptography. Chaos Solitons Fractals 40(1), 505–519 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Andrecut, M.: Logistic map as a random number generator. Int. J. Modern Phys. B 12(9), 921–930 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. **ng-Yuan, Wang, **e, Yi-**n: A design of pseudo-random bit generator based on single chaotic system. Int. J. Modern Phys. C 23(3), 1250024 (2012)

    Article  Google Scholar 

  15. Shujun, Li, Xuanqin, Mou, Yuanlong, Cai: Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher cryptography. Prog. cryptol.—INDOCRYPT 2247, 316–329 (2001)

    MathSciNet  Google Scholar 

  16. Wang, X.Y., Yang, L.: Design of pseudo-random bit generator based on chaotic maps. Int. J. Modern Phys. B 26(32), 1250208 (2012)

    Article  Google Scholar 

  17. Kanso, A., Smaoui, N.: Logistic chaotic maps for binary numbers generations. Chaos Solitons Fractals 40(5), 2557–2568 (2009)

    Article  MathSciNet  Google Scholar 

  18. García-Martínez, M., Campos-Cantón, E.: Pseudo-random bit generator based on lag time series. Int. J. Modern Phys. C 25(4), 1350105 (2014)

    Article  Google Scholar 

  19. Franois, M., Grosges, T., Barchiesi, D., Erra, R.: Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simulat. 19(4), 887–895 (2014)

    Article  Google Scholar 

  20. Campos-Cantón, E., Femat, R., Pisarchik, A.N.: A family of multimodal dynamic maps. Commun. Nonlinear Sci. Numer. Simulat. 16(9), 3457–3462 (2011)

    Article  MATH  Google Scholar 

  21. García-Martínez, M., Campos-Cantón, I., Campos-Cantón, E., Celikovský, S.: Difference map and its electronic circuit realization. Nonlinear Dyn. 74(3), 819–830 (2013)

    Article  Google Scholar 

  22. Devaney, R.: An Introduction to Chaotic Dynamical Systems. Westview Press, Boulder (2003)

    MATH  Google Scholar 

  23. Li, C., Chen, G.: Estimating the Lyapunov exponents of discrete systems. Chaos 14(2), 343–346 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yang, C., Wu, C.Q., Zhang, P.: Estimation of Lyapunov exponents from a time series for n-dimensional state space using nonlinear map**. Nonlinear Dyn. 69(4), 1496–1507 (2012)

    MathSciNet  Google Scholar 

  25. Beker, H., Piper, F.: Cipher Systems: The Protection of Communications. Wiley, New York (1982)

    MATH  Google Scholar 

  26. Gustafson, H., Dawson, E., Nielsen, L., Caelli, W.: A computer package for measuring the strength of encryption algorithms. Comput. Secur. 13(8), 687–697 (1994)

    Article  Google Scholar 

  27. Marsaglia, G. : DIEHARD Statistical Tests: http://www.stat.fsu.edu/pub/diehard/

  28. A. Rukhin et al: A Statistical test suite for random and pseudo-random number generators for cryptographic applications, pp. 800–822. NIST special publication (2010)

  29. Biham, E., Shamir, A.: Differential cryptanalysis of the data encryption standard. Springer, Newyork (1993)

    Book  MATH  Google Scholar 

  30. IEEE Computer Society: IEEE Standard Binary Floating-Point Arithmetic, ANSI/IEEE std (1985)

  31. Shannon, C.: Communication theory of secrecy systems. Syst. Tech. J. 28, 623 (1948)

    Article  Google Scholar 

  32. Ahmed, H.E.D.H., Kalash, H.M., Farag Allah, O.S.: Encryption quality analysis of the RC5 block cipher algorithm for digital images. Opt. Eng. 45(10), 107003 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

M. García-Martínez is doctoral fellow of the CONACYT in the Graduate Program on control and dynamical systems at DMAp-IPICYT. E. Campos-Cantón acknowledges the CONACYT financial support through project No. 181002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. García-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Martínez, M., Campos-Cantón, E. Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn 82, 2119–2131 (2015). https://doi.org/10.1007/s11071-015-2303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2303-y

Keywords

Navigation