Log in

Real-time cryptosystem based on synchronized chaotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents an efficient approach to synchronizing two identical chaotic systems in order to achieve a cryptosystem, and this approach is intended specifically to digital communications. Instead of sending a drive signal accompanied with encrypted message to the receiver, we send only one signal which results a continuous perturbation to the chaotic system. The large computation precision used for implementation and the way by which the system key is chosen reveal high randomness of the proposed chaotic cryptosystem (PCCS) and avoid short cycles and non-chaotic regions. The mechanism used for encryption shows the reliability and efficiency of the PCCS in terms of security, and this can be proven by the failing of cryptanalysis that carried out on the PCCS and the good results of statistical tests. The real-time FPGA hardware implementation results show the efficiency of the PCCS in terms of throughput and hardware resources consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Christof, P., Jan, P.: Understanding Cryptography: A Textbook for Students and Practitioners. Springer, Berlin (2009)

    Google Scholar 

  2. Das, V.V., Thankachan, N.: Computational Intelligence and Information Technology. Springer, Berlin 239–248 (2013)

  3. Alexander, N., Massimiliano, Z.: Chaotic map cryptography and security. Int. J. Comput. Res. 19(1), 1–28 (1999)

  4. Gonzalo, A., Shujun, Li: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MATH  Google Scholar 

  5. Lawande, Q.V., Ivan, B.R., Dhodapkar, S.D.: Chaos based cryptography: a new approach to secure communications. BARC Newsletter, No. 258 (2005)

  6. Pande, A., Zambreno, J.: A chaotic encryption scheme for real-time embedded systems: design and implementation. Telecommun. Syst. 52, 551–561 (2013)

    Google Scholar 

  7. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 68(8), 821–825 (1999)

  8. Kwok, H.S., Wallace, K.S.T.: A fast image encryption system based on chaotic maps with finite precision representation. Chaos Solitons Fractals 32, 1518–1529 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung, Y.L., et al.: Period extension and randomness enhancement using high-throughput reseeding-mixing PRNG. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(2), 385–389 (2012)

    Article  Google Scholar 

  10. Rogelio, H.B., Roxana, R.R.: Cycle detection for secure chaos-based encryption. Commun. Nonlinear Sci. Numer. Simul. 16, 3203–3211 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, T.: A survey of chaotic secure communication. Int. J. Comput. Cognit. 2(2), 81–130 (2004)

    Google Scholar 

  12. Cuomo, K.M., Oppenheim, A.V., Strogatz, S.H.: Synchronization of Lorenz based chaotic circuits with applications to communications. IEEE Trans. Circ. Syst. 40, 626–633 (1993)

    Article  Google Scholar 

  13. Dedieu, H., Kennedy, M.P., Hasler, M.: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circ. Syst. II 40, 634–642 (1993)

    Article  Google Scholar 

  14. Yang, T., Chua, L.O.: Secure communication via chaotic parameter modulation. IEEE Trans. Circ. Syst. I 43, 817–819 (1996)

    Article  Google Scholar 

  15. Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurc. Chaos 3, 1619–1627 (1994)

    Article  Google Scholar 

  16. Yang, T., Chai, W.W., Chua, L.O.: Cryptography based on chaotic systems. IEEE Trans. Circ. Syst. I 44(5), 469–472 (1997)

    Article  MATH  Google Scholar 

  17. Yang, T.: Impulsive control. IEEE Trans. Autom. Control 44, 108–114 (1999)

    Article  Google Scholar 

  18. Li, Z., Wen, C., Soh, Y.: Analysis and design of impulsive control systems. IEEE Trans. Autom. Control 46, 894–897 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, J., Zhang, Y.: Impulsive control of Rossler systems. Phys. Lett. A 306, 306–312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, S., Yang, Q., Wang, C.: Impulsive control and synchronization of unified chaotic system. Chaos Solitons Fractals 20, 751–758 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lixia, S., **, Qu., Yong, F.: Chaos synchronization using a robust sliding mode observer by transmitting a scalar signal. In: Conference on Circuits and Systems, IEEE Asia Pacific, pp. 1964–1967 (2006). ISBN: 1-4244-0387-1

  22. Boccalettia, S., et al.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002)

    Article  MathSciNet  Google Scholar 

  23. Kocarev, L., Parlitz, U.: General approach for chaotic synchronization with applications to communication. Phys Rev Lett 74, N25 (1995)

    Article  Google Scholar 

  24. Azzaz, M.S., et al.: Real-time image encryption based chaotic synchronized embedded cryptosystems. In: IEEE International NEWCAS Conference, pp. 61–64 (2010)

  25. Zhang, L.B, et al.: Cryptanalysis and improvement of an efficient and secure medical image protection scheme. Math. Probl. Eng. 2015. Article ID 913476

  26. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chengqing, L.I., et al.: Breaking an image encryption algorithm based on chaos. Int. J. Bifurc. Chaos 21(7), 2067–2076 (2011)

    Article  MATH  Google Scholar 

  28. Guanrong, C., et al.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21, 749–761 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Alireza, J., Abdolrasoul, M.: Image encryption using chaos and block cipher. Comput. Inf. Sci. 4(1), 172–185 (2011)

  30. Himan, K., et al.: Image encryption using random bit sequence based on chaotic maps. Arab. J. Sci. Eng. 39, 1039–1047 (2014)

  31. Kamel, F.: Chaos-based key stream generator based on multiple maps combinations and its application to images encryption. Int. Arab J. Inf. Technol. 7(3), 231–240 (2010)

  32. Linhua, W., Xuebing, L.: A novel image encryption approach based on chaotic piecewise map. J. Theor. Phys. Cryptogr. 1, 37–40 (2012)

  33. Sadkhan, A.M., Sattar, B.: Multidisciplinary Perspectives in Cryptology and Information Security. IGI Global, Hershey (2014)

    Book  Google Scholar 

  34. Andrew, R., et al.: A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Information Technology Laboratory, NIST, Gaithersburg, MD 20899-8930 (2010)

  35. Marsaglia, G.: DIEHARD Statistical Tests. http://stat.fsu.edu/geo/diehard.html

  36. Digilent Inc.: Nexys4 FPGA Board Reference Manual. Nexys4 Rev. B. Revised November 19 (2013)

  37. **linx Inc.: System Generator for DSP Getting Started Guide, UG639 (v 14.3) October 16 (2012)

  38. Gao, H., et al.: A new chaotic algorithm for image encryption. Chaos Solitons Fractals 29, 393–399 (2006)

    Article  MATH  Google Scholar 

  39. Fridrich, J.: Symmetric ciphers based on two dimensional chaotic maps. Int. J. Bifurc. Chaos 8(6), 1259–1284 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kocarev, L., et al.: Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc. Chaos 2, 709–713 (1992)

    Article  MATH  Google Scholar 

  41. Lee, C., et al.: A secure communications system using chaotic switching. Int. J. Bifurc. Chaos 7(6), 1383–1394 (1997)

    Article  MATH  Google Scholar 

  42. Perez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995)

    Article  Google Scholar 

  43. Pareek, N., et al.: Discrete chaotic cryptography using external key. Phys. Lett. A 309(1–2), 75–82 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wei, J., et al.: Cryptanalysis of a cryptosystem using multiple one-dimensional chaotic maps. Commun. Nonlinear Sci. Numer. Simul. (2006). doi:10.1016/j.cnsns.2005.06.001

  45. Paris, K., et al.: FPGA-based performance analysis of stream ciphers ZUC, Snow3g, Grain V1, Mickey V2, Trivium and E0. Microprocess Microsyst 37, 235–245 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lahcene Merah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merah, L., Ali-Pacha, A. & Hadj-Said, N. Real-time cryptosystem based on synchronized chaotic systems. Nonlinear Dyn 82, 877–890 (2015). https://doi.org/10.1007/s11071-015-2202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2202-2

Keywords

Navigation