Log in

Model predictive control for improving operational efficiency of overhead cranes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Model predictive control (MPC) has been successfully applied to many transportation systems. For the control of overhead cranes, existing MPC approaches mainly focus on improving the regulation performance, such as tracking error or steady-state error. In this paper, energy efficiency as well as safety is newly considered in our proposed MPC approach. Based on the system model designed, the MPC approach is applied to minimize an objective function that is formulated as the integration of energy consumption and swing angle. In our approach, promising results in terms of low energy consumption and small swing angle can be found, while the solutions obtained can satisfy all practical constraints. Our test results indicate that the MPC approach can ensure stability and robustness of improving energy efficiency and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Blajer, W., Dziewiecki, K., Kolodziejczyk, K., Mazur, Z.: Inverse dynamics of underactuated mechanical systems: a simple case study and experimental verification. Commun. Nonlinear Sci. Numer. Simul. 16(5), 2265–2272 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Masoud, Z.: Effect of hoisting cable elasticity on anti-sway controllers of quay-side container cranes. Nonlinear Dyn. 58(1–2), 129–140 (2009)

    Article  MATH  Google Scholar 

  3. Nayfeh, N., Baumann, W.: Nonlinear analysis of time-delay position feedback control of container cranes. Nonlinear Dyn. 53(1–2), 75–88 (2008)

    Article  MATH  Google Scholar 

  4. Wu, X., He, X., Sun, N., Fang, Y.: A novel anti-swing control method for 3-d overhead cranes. In: Proceedings of the 2014 American Control Conference (ACC), 2014, pp. 2821–2826 (2014)

  5. Moon, M., Vanlandingham, H., Beliveau, Y.: Fuzzy time optimal control of crane load. In: Proceedings of the 35th IEEE Conference on Decision and Control, 1996, vol. 2, pp. 1127–1132 (1996)

  6. Piazzi, A., Visioli, A.: Optimal dynamic-inversion-based control of an overhead crane. IEE Proc. Control Theory Appl. 149(5), 405–411 (2002)

    Article  Google Scholar 

  7. Garrido, S., Abderrahim, M., Gimenez, A., Diez, R., Balaguer, C.: Anti-swinging input sha** control of an automatic construction crane. IEEE Trans. Autom. Sci. Eng. 5(3), 549–557 (2008)

    Article  Google Scholar 

  8. Singhose, W., Porter, L., Kenison, M., Kriikku, E.: Effects of hoisting on the input sha** control of gantry cranes. Control Eng. Pract. 8(10), 1159–1165 (2000)

    Article  Google Scholar 

  9. Fang, Y., Dixon, W., Dawson, D., Zergeroglu, E.: Nonlinear coupling control laws for an underactuated overhead crane system. IEEE/ASME Trans. Mechatron. 8(3), 418–423 (2003)

  10. Fang, Y., Zergeroglu, E., Dixon, W., Dawson, D.: Nonlinear coupling control laws for an overhead crane system. In: Proceedings of the 2001 IEEE International Conference on Control Applications, 2001, pp. 639–644 (2001)

  11. Ngo, Q.H., Hong, K.S.: Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans. Mechatron. 17(2), 201–209 (2012)

    Article  Google Scholar 

  12. Tuan, L., Moon, S.C., Lee, W., Lee, S.G.: Adaptive sliding mode control of overhead cranes with varying cable length. J. Mech. Sci. Technol. 27(3), 885–893 (2013). doi:10.1007/s12206-013-0204-x

    Article  Google Scholar 

  13. Park, M., Chwa, D., Eom, M.: Adaptive sliding-mode antisway control of uncertain overhead cranes with high-speed hoisting motion. IEEE Trans. Fuzzy Syst. 22(5),1262–1271 (2014). doi:10.1109/TFUZZ.2013.2290139

  14. Mahfouf, M., Kee, C.H., Abbod, M.F., Linkens, D.A.: Fuzzy logic-based anti-sway control design for overhead cranes. Neural Comput. Appl. 9(1), 38–43 (2000)

    Article  Google Scholar 

  15. Benhidjeb, A., Gissinger, G.: Fuzzy control of an overhead crane performance comparison with classic control. Control Eng. Pract. 3(12), 1687–1696 (1995)

    Article  Google Scholar 

  16. Yang, J.H., Yang, K.S.: Adaptive coupling control for overhead crane systems. Mechatronics 17(2), 143–152 (2007)

    Article  Google Scholar 

  17. Sun, N., Fang, Y., Zhang, X., Yuan, Y.: Transportation task-oriented trajectory planning for underactuated overhead cranes using geometric analysis. IET Control Theory Appl. 6(10), 1410–1423 (2012)

    Article  MathSciNet  Google Scholar 

  18. Fang, Y., Ma, B., Wang, P., Zhang, X.: A motion planning-based adaptive control method for an underactuated crane system. IEEE Trans. Control Syst. Technol. 20(1), 241–248 (2012)

    Google Scholar 

  19. Park, M.S., Chwa, D., Hong, S.K.: Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans. Ind. Electron. 55(11), 3972–3984 (2008)

    Article  Google Scholar 

  20. Masoud, Z., Nayfeh, A.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34(3–4), 347–358 (2003)

    Article  MATH  Google Scholar 

  21. Sun, N., Fang, Y.: New energy analytical results for the regulation of underactuated overhead cranes: an end-effector motion-based approach. IEEE Trans. Ind. Electron. 59(12), 4723–4734 (2012)

    Article  Google Scholar 

  22. Lee, H.H.: Motion planning for three-dimensional overhead cranes with high-speed load hoisting. Int. J. Control 78(15), 875–886 (2005)

    Article  MATH  Google Scholar 

  23. Tuan, L., Lee, S.G., Dang, V.H., Moon, S., Kim, B.: Partial feedback linearization control of a three-dimensional overhead crane. Int. J. Control Autom. Syst. 11(4), 718–727 (2013)

    Article  Google Scholar 

  24. García, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice—survey. Automatica 25(3), 335–348 (1989)

    Article  MATH  Google Scholar 

  25. **a, X., Zhang, J., Elaiw, A.: An application of model predictive control to the dynamic economic dispatch of power generation. Control Eng. Pract. 19(6), 638–648 (2011)

    Article  Google Scholar 

  26. Kleinman, D.: An easy way to stabilize a linear constant system. IEEE Trans. Autom. Control 15(6), 692–692 (1970)

    Article  MathSciNet  Google Scholar 

  27. Qin, S., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng. Pract. 11(7), 733–764 (2003)

    Article  Google Scholar 

  28. Otomega, B., Marinakis, A., Glavic, M., Van Cutsem, T.: Model predictive control to alleviate thermal overloads. IEEE Trans. Power Syst. 22(3), 1384–1385 (2007)

    Article  Google Scholar 

  29. Raffo, G., Gomes, G., Normey-Rico, J., Kelber, C., Becker, L.: A predictive controller for autonomous vehicle path tracking. IEEE Trans. Intell. Transp. Syst. 10(1), 92–102 (2009)

  30. Zhang, L., Zhuan, X.: Optimal operation of heavy-haul trains equipped with electronically controlled pneumatic brake systems using model predictive control methodology. IEEE Trans. Control Syst. Technol. 22(1), 13–22 (2014)

    Article  Google Scholar 

  31. Arnold, E., Sawodny, O., Neupert, J., Schneider, K.: Anti-sway system for boom cranes based on a model predictive control approach. In: 2005 IEEE International Conference Mechatronics and Automation, vol. 3, pp. 1533–1538 (2005)

  32. Su, S.W., Nguye, H., Jarman, R., Zhu, J., Lowe, D., McLean, P., Huang, S., Nguyen, N.T., Nicholson, R., Weng, K.: Model predictive control of gantry crane with input nonlinearity compensation. In: Proceedings of World Academy of Science, Engineering and Technology, vol. 3, pp. 312–316 (2009)

  33. Makkar, C., Hu, G., Sawyer, W.G., Dixon, W.: Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction. IEEE Trans. Autom. Control 52(10), 1988–1994 (2007)

    Article  MathSciNet  Google Scholar 

  34. Sun, N., Fang, Y., Zhang, Y., Ma, B.: A novel kinematic coupling-based trajectory planning method for overhead cranes. IEEE/ASME Trans. Mechatron. 17(1), 166–173 (2012)

    Article  Google Scholar 

  35. Hoang, N.Q., Lee, S.G., Kim, J.J., Kim, B.S.: Simple energy-based controller for a class of underactuated mechanical systems. Int. J. Precis. Eng. Manuf. 15(8), 1529–1536 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., **a, X. & Zhu, B. Model predictive control for improving operational efficiency of overhead cranes. Nonlinear Dyn 79, 2639–2657 (2015). https://doi.org/10.1007/s11071-014-1837-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1837-8

Keywords

Navigation