Log in

Tamper detection and self-recovery scheme by DWT watermarking

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a tamper detection algorithm based on cat map and discrete wavelet decomposition. The algorithm is fragile to any tampering modification, but it is robust to harmless common image processing operations like JPEG compression, resizing, noising and filtering. The detection algorithm generates a witness image showing the tampered regions based on the blind analysis made on the tampered image. The embedding algorithm uses the approximation coefficient of a \(m \times m\) block image as the watermark to be inserted in the details coefficients of another block. The blocks pairs are associated using a cat map permutation of \(m \times m\) blocks. Moreover, we have been able to recover most of the original watermarked image based on a threshold depicted from the witness image. Simulations results demonstrate the efficiency of the tamper detection and recovery algorithm. We use many metrics to quantify the imperceptibility level like the PSNR, wPSNR, UIQ and SSIM. Also sensitivity and false alarm levels of the detection algorithm are measured and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Miscellaneous gray level image \(256 \times 256\). Computer Vision Group, University of Granada. http://decsai.ugr.es/cvg/dbimagenes/g256.php

  2. Arnold, V., Avez, A.: Ergodic Problems of Classical Mechanics, 564. Benjamin, New York (1968)

    Google Scholar 

  3. Bao, J., Yang, Q.: Period of the discrete Arnold cat map and general cat map. Nonlinear Dyn. 70, 1365–1375 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang, C., Hu, Y., Lu, T.: A watermarking-based image ownership and tampering authentication scheme. Pattern Recognit. Lett. 27, 439–446 (2006)

    Article  Google Scholar 

  5. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Conference Series in Applied Mathematics SIAM Ed (1992)

  6. Dyson, F., Falk, H.: Period of a discrete cat map**. Am. Math. Mon. 99(7), 603–614 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hsu, C.S., Tu, S.F.: Probability-based tampering detection scheme for digital images. Opt. Commun. 283, 1737–1743 (2010)

    Article  Google Scholar 

  8. Lin, P., Hsieh, C., Huang, P.: A hierarchical digital watermarking method for image tamper detection and recovery. Pattern Recognit. 38, 2519–2529 (2005)

    Article  Google Scholar 

  9. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  10. Meyer, Y.: Ondelettes et opérateurs, vol. I–III. Hermann, Paris (1990)

  11. Pereira, S., Voloshynovskiy, S., Madueno, M., Marchand-Maillet, S., Pun, T.: Second generation benchmarking and application oriented evaluation. In: Information Hiding Workshop III Pittsburgh, PA, USA, (April 2001). http://cvml.unige.ch/ResearchProjects/Watermarking/Checkmark/

  12. Peterson, G.: Arnold’s cat map. http://online.redwoods.cc.ca.us/instruct/darnold/laproj/Fall97/Gabe/catmap.pdf (1997)

  13. Redi, J.A., Taktak, W., Dugelay, J.L.: Digital image forensics: a booklet for beginners. Multimed. Tools Appl. 51, 133–162 (2011)

    Article  Google Scholar 

  14. Voloshynovskiy, S., Pereira, S., Iquise, V., Pun, T.: Attack modelling: towards a second generation watermarking benchmark. Signal Process. 81, 1177–1214 (2001)

  15. Voloshynovsky, S., Herrigel, A., Baumgaertner, N., Pun, T.: A stochastic approach to content adaptive digital image watermarking. In: IH ’99 Proceedings of the Third International Workshop on Information Hiding, pp. 211–236. Dresden, Germany (1999)

  16. Wu, L., Cao, X., Zhang, W., Wang, Y.: Detecting image forgeries using metrology. Mach. Vis. Appl. 23, 363–373 (2012)

    Article  Google Scholar 

  17. Li, X.H., Zhao, Y.Q., Liao, M., Shih, F.Q., Shi, Y.Q.: Passive detection of copy-paste forgery between jpeg images. J. Cent. South Univ. 19, 2831–2851 (2012)

  18. Yerushalmy, I., Hel-Or, H.: Digital image forgery detection based on lens and sensor aberration. Int. J. Comput. Vis. 92, 71–91 (2011)

    Article  MATH  Google Scholar 

  19. Yu-**, Z., Sheng-hong, L., Shi-lin, W.: Detecting shifted double jpeg compression tampering utilizing both intra-block and inter-block correlations. J. Shanghai Jiaotong Univ. (Sci.) 18(1), 7–16 (2013)

    Article  Google Scholar 

  20. Wang, Z.: A.C.B.: a universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  21. Wang, Z., Bovik, A.C., Sheik, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama Benrhouma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benrhouma, O., Hermassi, H. & Belghith, S. Tamper detection and self-recovery scheme by DWT watermarking. Nonlinear Dyn 79, 1817–1833 (2015). https://doi.org/10.1007/s11071-014-1777-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1777-3

Keywords

Navigation