Log in

To obtain approximate probability density functions for a class of axially moving viscoelastic plates under external and parametric white noise excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The probability density function plays an essential role to investigate the behaviors of stochastic linear or nonlinear systems. This function can be evaluated by several approaches but due to its analytical theme, the Fokker–Planck–Kolmlgorov (FPK) approach is preferable. FPK equation is a nonlinear PDE gives the probability density function for a stochastic linear or nonlinear system. Many researches have been done in literature tried to specify the conditions, in which the FPK equation gives an exact solution. Although, the exact probability density function can be achieved by solving the FPK equation even for some nonlinear systems, many types of systems cannot satisfy the conditions for exact solution. In this article, the axially moving viscoelastic plates under both external and parametric white noise excitation as one of the newest and applicable research areas are studied. Due to strong nonlinearities recognized in the governing equation of the system, the exact probability density function cannot be obtained, however, via an approximate method; some precise approximate solutions for different but comprehensive case studies are evaluated, validated, and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hatami, S., Azhari, M., Asnafi, A.: Exact supercritical vibration of travelling orthotropic plates using dynamic stiffness method. In: 8th International Congress on Civil Engineering May 11–13, Shiraz University, Shiraz, Iran, (2009)

  2. Pakdemirli, M., Batan, H.: Dynamic stability of a constantly accelerating string. J. Sound Vib. 168(2), 371–378 (1993)

    Article  MATH  Google Scholar 

  3. Pakdemirli, M., Ulsoy, A.G., Ceranoglu, A.: Transverse vibration of an axially accelerating string. J. Sound Vib. 169(2), 179–196 (1994)

    Article  MATH  Google Scholar 

  4. Fung, R.F., Huang, J.S., Chen, Y.C.: The transient amplitude of the viscoelastic travelling string: an integral constitutive law. J. Sound Vib. 201, 153–167 (1997)

    Article  Google Scholar 

  5. Chen, L.Q., Zhang, N.H., Zu, J.W.: The regular and chaotic vibrations of an axially moving viscoelastic string based on 4-order Galerkin truncation. J. Sound Vib. 261(4), 764–773 (2003)

    Article  Google Scholar 

  6. Chen, L.Q., Wu, J., Zu, J.W.: Asymptotic nonlinear behaviors in transverse vibration of an axially accelerating viscoelastic string. Nonlinear Dyn. 35(4), 347–360 (2004)

    Article  MATH  Google Scholar 

  7. Chen, L.Q., Wu, J., Zu, J.W.: The chaotic response of the viscoelastic traveling string: an integral constitutive law. Chaos, Solitons & Fractals 21(2), 349–357 (2004)

    Article  MATH  Google Scholar 

  8. Zhang, N.H.: Dynamic analysis of an axially moving viscoelastic string by the Galerkin method using translating string eigenfunctions. Chaos Solitons & Fractals 35, 291–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hatami, S., Azhari, M., Saadatpour, M.: Free vibration of moving laminated composite plates. Compos. Struct. 80, 609–620 (2007)

    Article  Google Scholar 

  10. Asnafi, A.: Analytic Stationary Nonlinear Behavior Investigation of Axially Moving Elastic Plates Submerged in a Fluid with Random Pressure by Using FPK Method. 1st ISAV 2011, Tehran, Iran (In Persian)

  11. Bolotin, V.V.: Random Vibrations of Elastic Systems. Martinus Nijhoff Publishers, Boston (1984)

    Book  MATH  Google Scholar 

  12. Fuller, A.T.: Analysis of nonlinear stochastic system by means of the Fokker–Planck equation. Int. J. Control 9(6), 603–655 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Potapov, V.P.: Stability of Stochastic Elastic and Viscoelastic Systems. John Wiley and sons, Hoboken (1999)

    Google Scholar 

  14. Roberts, J.B., Spannos, P.D.: Random Vibration and Statistical Linearization. John Wiley and sons, Hoboken (1990)

    MATH  Google Scholar 

  15. Yong, Y., Lin, Y.K.: Exact stationary response solution for second order nonlinear system under parametric and external white noise excitations. ASME J. of Appl. Mech. 54, 414–418 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cai, G.Q., Lin, Y.K.: On exact stationary solutions of equivalent nonlinear stochastic system. Int. J. Non-Linear Mech. 23(4), 315–325 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Caughey, T.K., Fai, M.: The exact steady state solution of a class of nonlinear stochastic systems. Int. J. Nonlinear Mech. 17(3), 137–142 (1982)

    Article  MATH  Google Scholar 

  18. Asnafi, A., Mahzoon, M.: Using FPK equation to analyze nonlinear behavior of some oscillators under random forcing function. In: 13th ISME Conference, Isfahan, Iran (2005)

  19. Asnafi, A.: Analytic instability recognition of a lightly viscoelastic plate with large deformations and stochastic axial motion. In: 20th Annual International Conference on Mechanical Engineering-ISME2012, School of Mechanical Eng., Shiraz University, Shiraz, Iran (2012)

  20. Booton, R.C.: Nonlinear control systems with random inputs. IRE Trans. Circuit Theory CT-1 1, 9–19 (1954)

    Article  Google Scholar 

  21. Iyengar, R.N., Dash, P.K.: Study of the random vibration of nonlinear systems by the Gaussian closure technique. J. Appl. Mech. Am. Soc. Mech. Eng. 45, 393–399 (1978)

  22. Crandall, S.H.: Perturbation techniques for random vibration of nonlinear systems. J. Acoust. Soc. Am. 35, 1700–1705 (1963)

    Article  MathSciNet  Google Scholar 

  23. Assaf, S.A., Zirkie, L.D.: Approximate analysis of nonlinear stochastic systems. Int. J. Control 23, 477–492 (1976)

    Article  MATH  Google Scholar 

  24. Crandall, S.H.: Non-Gaussian closure for random vibration of nonlinear oscillators. Int. J. Non-Linear Mech. 15, 303–313 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hampl, N.C., Schueller, G.I.: Probability densities of the response of nonlinear substitutes under stochastic dynamic excitation. Probab. Eng. Mech. 4, 2–9 (1989)

    Article  Google Scholar 

  26. Lutes, L.D.: Approximate technique for treating random vibration of hysteretic systems. J. Acoust. Soc. Am. 48, 299–306 (1970)

    Article  Google Scholar 

  27. Cai, G.Q., Lin, Y.L.: A new approximate solution technique for randomly excited nonlinear oscillators. Int. J. Non-Linear Mech. 23, 409–420 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 1. Gordon and Breach, New York (1963)

    Google Scholar 

  29. Roberts, J.B., Spanos, P.D.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Non-Linear Mech. 21, 111–134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bergman, L.A., Heinrich, J.C.: On the moments of time to first passage of the linear oscillator. Earthq. Eng. Struct. Dyn. 9, 197–204 (1981)

    Article  Google Scholar 

  31. Er, G.K.: Exponential closure method for some randomly excited nonlinear systems. Int. J. Non- Linear Mech. 35, 69–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhu, H.T., Er, G.K., Iu, V.P., Kou, K.P.: EPC procedure for PDF solution of non-linear oscillators excited by Poisson white noise. Int. J. Non-Linear Mech. 44(3), 304–310 (2009)

    Article  Google Scholar 

  33. Er, G.K., Zhu, H.T., Iu, V.P., Kou, K.P.: PDF solution of nonlinear oscillators subject to multiplicative Poisson pulse excitation on displacement. Nonlinear Dyn. 55, 337–348 (2008). doi:10.1007/s11071-008-9367-x

    Article  MathSciNet  Google Scholar 

  34. Rong, H., Wang, X., Meng, G., Xu, W., Fang, T.: Approximation closure method of FPK equations. J. Sound Vib. 266, 919–925 (2003)

  35. Timoshenko, S.P., Woinowsky, S.: Theory of Plates and Shells, 2nd edn. International Student Edition, New York (1984)

    Google Scholar 

  36. Asnafi, A., Mahzoon, M.: Studying of the nonlinear behaviors of Elastic Plates using both statistical moments and FPK equation (In Persian). In: 16th ISME Conference, Kerman, Iran (2008)

  37. Papoulis, A.: Probability, Random Variables and Stochastic Process. Int. Student Edition, New York (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Asnafi.

Appendices

Appendix A: The equations needed to be solved for Case (1.a) Example (1)

\(2a_5 +a_2^2 +10=0\)

\(100a_2 +a_8 +a_2 a_4 =0\)

\(200a_4 +2a_{12} +2a_2 a_7 +a_4^2 =0\)

\(45a_2 +100a_7 +a_2 a_{11} +a_4 a_7 =0\)

\(90a_4 +200a_{11} +2a_4 a_{11} +a_7^2 =0\)

\(-\,100a_1 +5a_2 +3a_9 +2a_2 a_5 =0\)

\(-\,100a_4 +10a_5 +6a_{14} +3a_2 a_9 +2a_5^2 =0\)

\(-\,100a_8 +15a_9 +4a_2 a_{14} +6a_5 a_9 =0\)

\(-\,200a_3 +5a_4 +200a_5 +3a_{13} +2a_2 a_8 +2a_4 a_5 =0\)

\(-\,200a_7 +10a_8 +300a_9 +3a_2 a_{13} +3a_4 a_9 +4a_5 a_8 =0\)

\(-\,200a_{12} +15a_{13} +400a_{14} +4a_4 a_{14} +6a_5 a_{13} +6a_8 a_9 =0\)

\(-\,300a_6 +5a_7 +200a_8 +2a_2 a_{12} +2a_4 a_8 +2a_5 a_7 =0\)

\(-\,300a_{11} \!+\!10a_{12} \!+\!300a_{13} \!+\!3a_4 a_{13} \!+\!4a_5 a_{12} \!+\!3a_7 a_9 \!-\!2a_8^2 =0\)

\(90a_5 -\,400a_{10} \!+\!5a_{11} \!+\!200a_{12} \!+\!2a_4 a_{12} \!+\!2a_5 a_{11} \!+\!2a_7 a_8 =0\)

Appendix B: The values of unknown parameters \(a\) in Example (2) for \(n=6\)

Case study (2.a)

\(a_1 =a_2 =a_6 =a_7 =a_8 =a_9 =a_{15} =a_{16} =a_{17} =a_{18} =a_{19} =a_{20} =0\),

\(a_3 =-7.9975\),

\(a_4 =-0.0201\),

\(a_5 =-8.0000\),

\(a_{10} =-\,2.1436\),

\(a_{11} =0.0092\),

\(a_{12} =-\,0.6859\),

\(a_{13} =0.1140\),

\(a_{14} =-\,0.3357\),

\(a_{21} =-\,0.1076\),

\(a_{22} =-\,0.0041\),

\(a_{23} =-\,0.0144\),

\(a_{24} =-\,0.0498\),

\(a_{25} =0.1326\),

\(a_{26} =-\,0.0179\),

\(a_{27} =0.0438\)

Case study (2.b)

\(a_1 =a_2 =a_6 =a_7 =a_8 =a_9 =a_{15} =a_{16} =a_{17} =a_{18} =a_{19} =a_{20} =0\),

\(a_3 =7.9975\),

\(a_4 =0.0204\),

\(a_5 =-8.0000\),

\(a_{10} =-1.4691\),

\(a_{11} =0.0094\),

\(a_{12} =-0.6631\),

\(a_{13} =-\,0.1155\),

\(a_{14} =0.3395\),

\(a_{21} =-0.1088\),

\(a_{22} =0.0043\),

\(a_{23} =0.0277\),

\(a_{24} =-\,0.0696\),

\(a_{25} =0.1281\),

\(a_{26} =0.0374\),

\(a_{27} =-\,0.0460\)

Case study (2.c)

\(a_1 =0.4805\),

\(a_2 =-\,0.0010\),

\(a_3 =8.0019\),

\(a_4 =0.0204\),

\(a_5 =-\,8.0031\),

\(a_6 =0.0421\),

\(a_7 =-\,0.0009\),

\(a_8 =-\,0.0430\),

\(a_9 =0.0066\),

\(a_{10} =-\,1.4677\),

\(a_{11} =0.0094\),

\(a_{12} =-\,0.6667\),

\(a_{13} =-\,0.1155\),

\(a_{14} =0.3410\),

\(a_{15} =-\,0.0002\),

\(a_{16} =-\,0.0006\),

\(a_{17} =-\,0.0196\),

\(a_{18} =0.0065\),

\(a_{19} =0.0105\),

\(a_{20} =-\,0.0046\),

\(a_{21} =-\,0.1087\),

\(a_{22} =0.0043\),

\(a_{23} =0.0261\),

\(a_{24} =-0.0695\),

\(a_{25} =0.1304\),

\(a_{26} =0.0372\),

\(a_{27} =-\,0.0467\)

   

Appendix C: The values of unknown parameters \(a\) in Example (3)

Case study (3.a)

\(a_1 =-152.7729\),

\(a_2 =-1.0\),

\(a_3 =-1263.3921\),

\(a_4 =33.3333\),

\(a_5 =-2545.7154\),

\(a_6 =22307.2546\),

\(a_7 =-263.6060\),

\(a_8 =42727.4406\),

\(a_9 =2067.5139\),

\(a_{10} =-977080.1367\),

\(a_{11} =-5429.5027\),

\(a_{12} =-310635.3635\),

\(a_{13} =-103260.0029\),

\(a_{14} =354511.3694\),

\(a_{15} =-37643999.7723\),

\(a_{16} =283755.4916\),

\(a_{17} =-54649119.9759\),

\(a_{18} =1793834.4424\),

\(a_{19} =-16916856.7026\),

\(a_{20} =-972009.1141\),

\(a_{21} =-618635838.1771\),

\(a_{22} =8762930.1498\),

\(a_{23} =-1317844219.5187\),

\(a_{24} =48756550.8221\)

\(a_{25} =-800119718.3269\),

\(a_{26} =69851581.7298\),

\(a_{27} =-93172529.6414\)

Case study (3.b)

\(a_1 =152.7729\),

\(a_2 =1.0\),

\(a_3 =-1263.3921\),

\(a_4 =33.3333\),

\(a_5 =-2545.7153\),

\(a_6 =-22307.2546\),

\(a_7 =263.6060\),

\(a_8 =-42727.4406\),

\(a_9 =-2067.5139\),

\(a_{10} =-977080.1367\),

\(a_{11} =-5429.5027\),

\(a_{12} =-310635.3635\),

\(a_{13} =-103260.0029\),

\(a_{14} =354511.3694\),

\(a_{15} =37643999.7723\),

\(a_{16} =-283755.4916\),

\(a_{17} =54649119.9759\),

\(a_{18} =-1793834.4424\),

\(a_{19} =16916856.7027\),

\(a_{20} =972009.1141\),

\(a_{21} =-618635838.1770\),

\(a_{22} =8762930.1498\),

\(a_{23} =-1317844219.5187\),

\(a_{24} =48756550.8221\),

\(a_{25} =-800119718.3270\),

\(a_{26} =69851581.7298\),

\(a_{27} =-93172529.6414\)

Case study (3.c)

\(a_1 =142.8932\),

\(a_2 =1.0\),

\(a_3 =434.4922\),

\(a_4 =-33.3333\),

\(a_5 =-2381.0530\),

\(a_6 =-67147.5624\),

\(a_7 =318.4935\),

\(a_8 =64868.6926\),

\(a_9 =-1216.9983\),

\(a_{10} =-678545.2791\),

\(a_{11} =11010.3379\),

\(a_{12} =1193845.8803\),

\(a_{13} =76734.7719\),

\(a_{14} =-541485.1866\),

\(a_{15} =-3766990.1854\),

\(a_{16} =30728.7128\),

\(a_{17} =5497710.0682\),

\(a_{18} =-1231894.5530\),

\(a_{19} =-1790374.0391\),

\(a_{20} =-944753.2952\),

\(a_{21} =-64841224.7283\),

\(a_{22} =813188.2951\),

\(a_{23} =130455839.4146\),

\(a_{24} =-26418263.8454\),

\(a_{25} =-78207280.2551\),

\(a_{26} =46484737.9825\),

\(a_{27} =9159228.0266\),

\(a_{28} =-740339672.2476\),

\(a_{29} =16448970.5339\),

\(a_{30} =2127420231.9701\),

\(a_{31} =542455975.5900\),

\(a_{32} =-1856173147.6651\),

\(a_{33} =-387163761.0702\),

\(a_{34} =602399461.3791\),

\(a_{35} =-213505128.2748\),

\(a_{36} =-3952823115.6985\),

\(a_{37} =162400529.6958\),

\(a_{38} =16143716137.9273\),

\(a_{39} =9597030428.9760\),

\(a_{40} =-23548224514.4540\),

\(a_{41} =-18948051909.5750\),

\(a_{42} =11975906633.5031\),

\(a_{43} =11320453919.5812\),

\(a_{44} =-2696814742.9868\)

 

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, M., Asnafi, A. & Karami, K. To obtain approximate probability density functions for a class of axially moving viscoelastic plates under external and parametric white noise excitation. Nonlinear Dyn 78, 1717–1727 (2014). https://doi.org/10.1007/s11071-014-1536-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1536-5

Keywords

Navigation