Log in

Optimal control of the dynamic stability for robotic vehicles in rough terrain

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we mount semi-active suspensions between the wheels and platform of a robotic vehicle to absorb the vibrations caused by movement over rough terrain. The semi-active suspension consists of a spring and a magneto-rheological damper. By combining the dynamic model of the suspended robotic vehicle and the control model of the damper, we propose a new methodology to evaluate the dynamic stability of the vehicle. The model considers the configuration of semi-active suspensions and the road-holding ability of robotic vehicles. Based on the stability criterion, we use the particle swarm optimization method to search the optimum semi-active dam** characteristics. The control model of the semi-active damper is checked by sinusoidal response analysis. To verify the dynamic stability criterion and the control method, we evaluate the proposed methodology by simulating a rough pavement condition and comparing the effectiveness of the method to a passive suspension. The results show that the proposed stability criterion is feasible, and the optimal control method yields a substantially improved dynamic stability when the vehicle moves through rough terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D map**: using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31, 647–663 (2012)

    Article  Google Scholar 

  2. Krainin, M., Henry, P., Ren, X., Fox, D.: Manipulator and object tracking for in-hand 3D object modeling. Int. J. Robot. Res. 30, 1311–1327 (2011)

    Article  Google Scholar 

  3. Graf, C., Kieneke, R., Maas, J.: Online force estimation for an active suspension control. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2012), Kaohsiung, Taiwan, pp. 544–549 (2012)

    Chapter  Google Scholar 

  4. Iagnemma, K., Dubowki, S.: Traction control of wheel mobile robots in rough terrain with applications to planetary rovers. Int. J. Robot. Res. 23, 1029–1040 (2004)

    Article  Google Scholar 

  5. Lai, C.Y., Liao, W.H.: Vibration control of a suspension system via a magnetorheological fluid damper. J. Vib. Control 8, 527–547 (2002)

    Article  Google Scholar 

  6. Nieto, A.J., Morales, A.L., Trapero, J.R., Chicharro, J.M., Pintado, P.: An adaptive pneumatic suspension based on the estimation of the excitation frequency. J. Sound Vib. 330, 1891–1903 (2011)

    Article  Google Scholar 

  7. Maciejewski, I.: Control system design of active seat suspensions. J. Sound Vib. 331, 1291–1309 (2012)

    Article  Google Scholar 

  8. Coulaud, J.B., Campion, G., Bastin, G., Wan, M.D.: Stability analysis of a vision-based control design for an autonomous mobile robot. IEEE Trans. Robot. 22, 1062–1069 (2006)

    Article  Google Scholar 

  9. Liu, Y., Waters, T.P., Brennan, M.J.: A comparison of semi-active dam** control strategies for vibration isolation of harmonic disturbances. J. Sound Vib. 280, 21–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shen, Y., Wang, L., Yang, S., Gao, G.: Nonlinear dynamical analysis and parameters optimization of four semi-active on-off dynamic vibration absorbers. J. Vib. Control 19, 143–160 (2012)

    Article  Google Scholar 

  11. Cetin, S., Zergeroglu, E., Sivrioglu, S., Yuksek, I.: A new semiactive nonlinear adaptive controller for structures using MR damper: design and experimental validation. Nonlinear Dyn. 66, 731–743 (2011)

    Article  MathSciNet  Google Scholar 

  12. Fateh, M.M., Khorashadizadeh, S.: Optimal robust voltage control of electrically driven robot manipulators. Nonlinear Dyn. 70, 1445–1458 (2012)

    Article  MathSciNet  Google Scholar 

  13. Appala, T., Ghosal, A.: Tip over stability analysis of a three-wheeled mobile robot capable of traversing uneven terrains without slip. Appl. Mech. Mater. 110, 2940–2947 (2011)

    Article  Google Scholar 

  14. Agheli, M., Nestinger, S.S.: Study of the foot force stability margin for multi-legged/wheeled robots under dynamic situations. In: Proceedings of IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA 2012), Suzhou, China, pp. 99–104 (2012)

    Chapter  Google Scholar 

  15. Farritor, S., Hacot, H., Dubowsky, S.: Physics-based planning for planetary exploration. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 1998), Leuven, Belgium, pp. 278–283 (1998)

    Google Scholar 

  16. Huang, Q., Tanie, K., Sugano, S.: Stability compensation of a mobile manipulator by manipulator motion: feasibility and planning. Adv. Robot. 13, 25–40 (1999)

    Article  Google Scholar 

  17. Dubowsky, S., Vance, E.E.: Planning mobile manipulator motions considering vehicle dynamic stability constraints. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 1989), Scottsdale, AZ, pp. 1271–1276 (1989)

    Google Scholar 

  18. Ghasempoor, A., Sepehri, N.: A measure of machine stability for moving base manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA 1995), Nagoya, Japan, pp. 2249–2254 (1995)

    Google Scholar 

  19. Pinto, C.M.A.: Stability of quadruped robot’s trajectories subjected to discrete perturbations. Nonlinear Dyn. 70, 2089–2094 (2012)

    Article  MathSciNet  Google Scholar 

  20. Siegwart, R., Lamon, P., Estier, T., Lauria, M., Piguet, R.: Innovative design for wheeled locomotion in rough terrain. Robot. Auton. Syst. 40, 151–162 (2002)

    Article  Google Scholar 

  21. Zhong, G., Kobayashi, Y., Emaru, T., Hoshino, Y.: Approaches based on particle swarm optimization for problems of vibration reduction of suspended mobile robot with a manipulator. J. Vib. Control (2012). doi:10.1177/1077546312458534

    Google Scholar 

  22. Zhong, G., Kobayashi, Y., Emaru, T., Hoshino, Y.: Trajectory tracking of wheeled mobile robot with a manipulator considering dynamic interaction and modeling uncertainty. In: Proceedings of the 5th International Conference on Intelligent Robotics and Applications (ICIRA 2012), Montreal, Canada, pp. 366–375 (2012)

    Chapter  Google Scholar 

  23. Zhong, G., Kobayashi, Y., Hoshino, Y., Emaru, T.: System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0776-0

    Google Scholar 

  24. Liu, Y., Waters, T.P., Brennan, M.J.: A comparison of semi-active dam** control strategies for vibration isolation of harmonic disturbances. J. Sound Vib. 280, 21–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rakheja, S., Sankar, S.: Vibration and shock isolation performance of a semi-active on-off damper. J. Vib. Acoust. Stress Reliab. Des. 107, 398–403 (1985)

    Article  Google Scholar 

  26. Parsopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput. 8, 211–224 (2004)

    Article  Google Scholar 

  27. Pires, E.J.S., Machado, J.A.T., Oliveira, P.B.M., Cunha, J.B., Mendes, L.: Particle swarm optimization with fractional-order velocity. Nonlinear Dyn. 61, 295–301 (2010)

    Article  MATH  Google Scholar 

  28. Smith, M.C., Wang, F.C.: Controller parameterization for disturbance response decoupling: application to vehicle active suspension control. IEEE Trans. Control Syst. Technol. 10, 393–407 (2002)

    Article  Google Scholar 

  29. Chen, Y., Wang, Z.L., Qiu, J., Huang, H.Z.: Hybrid fuzzy skyhook surface control using multi-objective microgenetic algorithm for semi-active vehicle suspension system ride comfort stability analysis. J. Dyn. Syst. Meas. Control 134, 1–14 (2012)

    Google Scholar 

  30. Thueer, T., Krebs, A., Siegwart, R., Lamon, P.: Performance comparison of rough-terrain robots-simulation and hardware. J. Field Robot. 24, 251–271 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the China Scholarship Council under grant number 2010615017 and Hokkaido University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, G., Kobayashi, Y., Emaru, T. et al. Optimal control of the dynamic stability for robotic vehicles in rough terrain. Nonlinear Dyn 73, 981–992 (2013). https://doi.org/10.1007/s11071-013-0847-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0847-2

Keywords

Navigation