Log in

Design of piezoaeroelastic energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We design a piezoaeroelastic energy harvester consisting of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. We choose the linear springs to produce the minimum flutter speed and then implement a linear velocity feedback to reduce the flutter speed to any desired value and hence produce limit-cycle oscillations at low wind speeds. Then, we use the center-manifold theorem to derive the normal form of the Hopf bifurcation near the flutter onset, which, in turn, is used to choose the nonlinear spring coefficients that produce supercritical Hopf bifurcations and increase the amplitudes of the ensuing limit cycles and hence the harvested power. For given gains and hence reduced flutter speeds, the harvested power is observed to increase, achieve a maximum, and then decrease as the wind speed increases. Furthermore, the response undergoes a secondary supercritical Hopf bifurcation, resulting in either a quasiperiodic motion or a periodic motion with a large period. As the wind speed is increased further, the response becomes eventually chaotic. These complex responses may result in a reduction in the generated power. To overcome this adverse effect, we propose to adjust the gains to increase the flutter speed and hence push the secondary Hopf bifurcation to higher wind speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, 175–195 (2006)

    Article  Google Scholar 

  2. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ben Ayed, S.: An energy harvester using piezoelectric cantilever beam undergoing coupled bending-torsion vibrations. Smart Mater. Struct. (2011). doi:10.1088/0964-1726/20/11/115007

    Google Scholar 

  3. Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)

    Article  Google Scholar 

  4. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  5. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0059-6

  6. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0064-9

  7. Arnold, D.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007)

    Article  Google Scholar 

  8. Mitcheson, P., Miao, P., Start, B., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micro-power generator for low frequency operation. Sens. Actuators A, Phys. 115, 523–529 (2004)

    Article  Google Scholar 

  9. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)

    Article  Google Scholar 

  10. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  11. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)

    Article  Google Scholar 

  12. Inman, D.J., Grisso, B.L.: Towards autonomous sensing. In: Proc. Smart Structures and Materials Conference, 61740T. SPIE Press, Bellingham (2006)

    Google Scholar 

  13. Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 16, 809–823 (2005)

    Google Scholar 

  14. De Marqui, C., Erturk, A., Inman, D.J.: Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes. J. Intell. Mater. Syst. Struct. 21, 983–993 (2010)

    Article  Google Scholar 

  15. Bryant, M., Garcia, E.: Energy harvesting: a key to wireless sensor nodes. Proc. SPIE 7493, 74931W (2009). doi:10.1117/12.845784

    Article  Google Scholar 

  16. Bryant, M., Garcia, E.: Development of an aeroelastic vibration power harvester. Proc. SPIE 7288, 728812 (2009). doi:10117/12.815785

    Article  Google Scholar 

  17. Erturk, A., Vieira, W.G.R., De Marqui, C., Inman, D.J.: On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 96, 184103 (2010)

    Article  Google Scholar 

  18. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0035-1

  19. Strganac, T.W., Ko, J., Thompson, D.E., Kurdila, A.J.: Identification and control of limit cycle oscillations in aeroelastic systems. In: Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, St. Louis, Missouri, vol. 3, pp. 99–1463 (1999)

    Google Scholar 

  20. Nayfeh, A.H.: Method of Normal Forms. Wiley Interscience, New York (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hajj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkefi, A., Nayfeh, A.H. & Hajj, M.R. Design of piezoaeroelastic energy harvesters. Nonlinear Dyn 68, 519–530 (2012). https://doi.org/10.1007/s11071-011-0233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0233-x

Keywords

Navigation