Log in

Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A nonlinear analysis of an energy harvester consisting of a multilayered cantilever beam with a tip mass is performed. The model takes into account geometric, inertia, and piezoelectric nonlinearities. A combination of the Galerkin technique, the extended Hamilton principle, and the Gauss law is used to derive a reduced-order model of the harvester. The method of multiple scales is used to determine analytical expressions for the tip deflection, output voltage, and harvested power near the first global natural frequency. The results show that one- or two-mode approximations are not sufficient to produce accurate estimates of the voltage and harvested power. A parametric study is performed to investigate the effects of the nonlinear piezoelectric coefficients and the excitation amplitude on the system response. The effective nonlinearity may be of the hardening or softening type, depending on the relative magnitudes of the different nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sodano, H.A., Park, G., Inman, D.J.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40, 49–58 (2004)

    Article  Google Scholar 

  2. Priya, S.: Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 19, 167–184 (2007)

    Article  Google Scholar 

  3. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  4. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16, 1–21 (2007)

    Article  Google Scholar 

  5. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J. Vib. Acoust. 130, 041002 (2008)

    Article  Google Scholar 

  6. Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, 175–195 (2006)

    Article  Google Scholar 

  7. Gurav, S.P., Kasyap, A., Sheplak, M., Cattafesta, L., Haftka, R.T., Goosen, J.F.L., Van Keulen, F.: Uncertainty-based design optimization of a micro piezoelectric composite energy reclamation device. In: 10th AIAA/ISSSMO Multidisciplinary Analysis and Optimization Conference, Albany, pp. 3559–3570 (2004)

    Google Scholar 

  8. Muralt, P.: Ferroelectric thin films for micro-sensors and actuators: a review. J. Micromech. Microeng. 10, 136–146 (2000)

    Article  Google Scholar 

  9. Inman, D.J., Grisso, B.L.: Towards autonomous sensing. In: Smart Structures and Materials Conference, vol. 61740T. SPIE, Bellingham (2006)

    Google Scholar 

  10. Roundy, S., Wright, P.K.: A piezoelectric vibration-based generator for wireless electronics. Smart Mater. Struct. 16, 809–823 (2005)

    Google Scholar 

  11. Magoteaux, K.C., Sanders, B., Sodano, A.H.: Investigation of energy harvesting small unmanned air vehicle. In: Smart Materials and Structures: Active and Passive Smart Structures and Integrated Systems II. Proceedings of the SPIE, vol. 6928, San Diego, CA, (2008)

    Google Scholar 

  12. Erturk, A., Renno, J.M., Inman, D.J.: Modeling of a piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20, 529–544 (2009)

    Article  Google Scholar 

  13. Anton, S.R., Inman, D.J.: Vibration energy harvesting for unmanned air vehicles. In: Smart Structures and Materials: Active and Passive Smart Structures and Integrated Systems II. Proceedings of SPIE, vol. 6982, San Diego, CA, 10–13 March (2008)

    Google Scholar 

  14. Williams, C.B., Yates, R.B.: Analysis of a micro-electric generator for microsystems. Sens. Actuators A 52, 8–11 (1996)

    Article  Google Scholar 

  15. Arnold, D.: Review of microscale magnetic power generation. IEEE Trans. Magn. 43, 3940–3951 (2007)

    Article  Google Scholar 

  16. Mitcheson, P., Miao, P., Start, B., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micro-power generator for low frequency operation. Sens. Actuators A 115, 523–529 (2004)

    Article  Google Scholar 

  17. Sodano, H.A., Inman, D.J., Park, G.: A review of power harvesting from vibration using piezoelectric materials. Shock Vib. Dig. 36, 197–205 (2004)

    Article  Google Scholar 

  18. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311 (2008)

    Article  Google Scholar 

  19. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  20. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaerolastic energy harvesters. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-0035-1

    Google Scholar 

  21. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)

    Google Scholar 

  22. Crawley, E.F., de Luis, J.: Use of actuators as elements of intelligent structures. AIAA J. 25, 1373–1385 (1987)

    Article  Google Scholar 

  23. Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilver sensor. IEEE/ASME Trans. Mechatron. 13, 58–65 (2008)

    Article  Google Scholar 

  24. von Wagner, U., Hagedorn, P.: Piezo-beam systems subjected to weak electric field: Experiments and modelling of non-linearities. J. Sound Vib. 256, 861–872 (2002)

    Article  Google Scholar 

  25. Samal, M.K., Seshu, P., Parashar, S., von Wagner, U., Hagedorn, P., Dutta, B.K., Kushwaha, H.S.: A finite element model for nonlinear behaviour of piezoceramics under weak electric fields. Finite Elem. Anal. Des. 41, 1464–1480 (2005)

    Article  Google Scholar 

  26. von Wagner, U., Hagedorn, P.: Nonlinear effects of piezoceramics excited by weak electric fields. Nonlinear Dyn. 31, 133–149 (2003)

    Article  MATH  Google Scholar 

  27. Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20, 1959 (2009)

    Article  Google Scholar 

  28. Massana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially-loaded energy harvesters. J. Vib. Acoust. 133, 011007 (2011)

    Article  Google Scholar 

  29. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification. J. Appl. Phys. 108, 074903 (2010)

    Article  Google Scholar 

  30. Joshi, S.P.: Nonlinear constitutive relations for piezoceramic materials. Smart Mater. Struct. 1, 80–83 (1992)

    Article  Google Scholar 

  31. Guyomar, D., Aurelle, N., Richard, C., Gonnard, P., Eyraud, L.: Nonlinearities in Langevin transducers. In: Proc., IEEE Ultrason. Symp.. vol. 1051, pp. 925–928 (1994)

    Google Scholar 

  32. Arafa, M., Baz, A.: On the nonlinear behavior of piezoelectric actuators. J. Vib. Control 10, 387–398 (2004)

    Article  MATH  Google Scholar 

  33. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. (2011). doi:10.1007/s11071-011-059-6

    Google Scholar 

  34. Nayfeh, A.H.: Perturbation Methods. Willey, New York (1973)

    MATH  Google Scholar 

  35. Nayfeh, A.H.: Introduction to Perturbation Techniques. Willey, New York (1981)

    MATH  Google Scholar 

  36. Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior. Application to Langevin transducer. J. Phys. 7, 1197–1208 (1997)

    Google Scholar 

  37. Sebald, G., Qiu, J., Guyomar, D., Hoshi, D.: Modeling and characterization of piezoelectric fibers with metal core. Jpn. J. Appl. Phys. 44, 6156–6163 (2005)

    Article  Google Scholar 

  38. Jiang, W., Cao, W.: Nonlinear properties of lead zirconate-titanate piezoceramics. J. Appl. Phys. 88, 6684–6689 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Hajj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelkefi, A., Nayfeh, A.H. & Hajj, M.R. Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn 67, 1221–1232 (2012). https://doi.org/10.1007/s11071-011-0064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0064-9

Keywords

Navigation